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Centralised strategies

• Some effective
centralised solution
approaches:

• ‘Genetic algorithm’
solution – a probabilistic
heuristics (offline) that
mimics the natural selection
process for obtaining global
optimal control plan

Random Timing
Plans for the

Network

Evaluate Performance
of each Plan

Reproduction

Cross-over

Mutation

DONE:
Output Best Timig Plan

Another
Generation?

Centralised strategies
• ‘Hill-climbing algorithm’

(e.g. in SCOOT) solution –
an online heuristics making
gradual adjustments on
timing plans w.r.t. real time
traffic
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Linear Quadratic Regulator (TUC)

• Formulation:

k – cycle index;

xk – (= [xi(k)]) queues on all links i by the end of each
cycle k

(state variable)

uk – (= [ui(k)]) adjustment made on green splits in cycle k

(control variable)
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Linear Quadratic Regulator

• The objective function is subject to the state equation for all i

• For source links:

• For intermediate links:

where J(i) is the set of links upstream of i ;

is the proportion of flow in j flowing into i
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Linear Quadratic Regulator

• The state equations can be summarised as

for some appropriate matrix B (a ‘sparse’ matrix of ‘minus’
saturation flows for each link)

• We can derive the feedback control rule as the optimality
condition (setting d = 0; ) of the control problem as:

where the gain matrix L can be derived through solving the
corresponding Bellman equation
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Linear Quadratic Regulator

• The gain matrix can be determined as:

• Where P can be solved (iteratively) from the following Riccati
equation

• Note that L is generally non-diagonal (as a centralised
regulator) but sparse matrix (with most elements zero)
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Centralised strategies

• Derive control plans with consideration of the entire
system for global objective (e.g. lowest system-wide
delay)

• Improve global efficiency, while it may come at the
expense of computational effort, and communication
links…

• Centralised design may(?) also cause the underlying
system less robust in case of incidents (e.g. see Helbing,
Le, etc)

Control architecture

A central computer Local controllers

Centralized control
structure

Decentralized control
structure
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Max-pressure controller (distributed)

• Define ‘pressure’ on phase i as a function of queue sizes

where Qi is the saturation flow on I

• ‘Right-of-way’ is assigned to phase has the maximum
pressure

Reference: Varaiya, P (2013) Max pressure control of a network of signalized
intersections, Transportation Research Part C, 36, 177-195.

xi

xj

Max-pressure controller (distributed control)

• Feedback control on queue sizes:

while:

L is diagonal (the control system is distributed)

x refers to ‘pressure’ at the junction

(which is defined as a difference between the queues
measured at upstream and downstream of the signal)

Reference: Varaiya, P (2013) Max pressure control of a network of signalized
intersections, Transportation Research Part C, 36, 177-195.

W(k)
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Turning ratio at all nodes: 30%
Traffic modelled by CTM

Inflows (with 10% c.o.v.):



01/06/2017

8

Experiment on a micro-platform

 How about on a microscopic platform with route choice?

 If incident(s) occur?

54
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6

87 9

Turning ratios vary w.r.t. traffic condition
Traffic modelled by SUMO

Inflows (with 10% c.o.v.):
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Routing algorithm
(iterative shortest path procedure)

 Construct an origin-destination
matrix following the previous
demand setting

 Each vehicle departs from its
origin, proceeds toward the
destination along the prevailing
shortest path

 The path will be revised
whenever the vehicle reaches
node based upon prevailing
traffic conditions (queues /
travel times)

Cyclic Max-pressure (Backpressure)

• Given the ‘pressure’ function:

Green splits are every cycle proportionally as:

Reference: Le, et al. (2015) Decentralised signal control for urban road networks,
Transportation Research Part C, 58, 431-450.
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With vs without re-routing

Without re-routing With re-routing
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Effect of re-routing rate

 Assume some
vehicles would
not re-route
regardless of the
prevailing traffic
conditions…
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An incident occurs …

 Suppose node 19
(and hence links 22
and 52) is down …

With vs without re-routing

Without re-routing With re-routing
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Decentralised MPC …
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Examples of methods:

• Multi-agent MPC (de Oliveira and
Camponogara, 2010);

• Alternating directions method of
multipliers (ADMM, Reilly and
Bayen, 2015);

• Approximation with Principle
Component Analysis (PCA,
Rinaldi, et al, 2016) …

Concluding remarks
 A performance comparison of centralised and distributed

control for urban road networks

 Significance of re-routing

 Could be due to the setting of TUC …

 Consideration of incidents (resilience)

 Centralisation / coordination is needed

 Ongoing work:

 Decentralisation / decomposition

 Online solution algorithm

(with consideration of travel behaviour changes)


