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Centralised strategies
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centralised solution
approaches:

‘Genetic algorithm’
solution — a probabilistic
heuristics (offline) that
mimics the natural selection
process for obtaining global
optimal control plan
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Centralised strategies
e ‘Hill-climbing algorithm’
(e.g. in SCOOT) solution —
an online heuristics making
gradual adjustments on
timing plans w.r.t. real time
traffic

SGOOT Architecture

1

-
-

_ b
— - -
A=
'WOWAY T LD

$GOOT Traffic Model
Performance

' Index .
Flow & On-Lins " s Optimum
Congastion — | Traffic Modal soPimisars ) = _Signal
ata Smimria TRANSYT P Timings

L Trial Signal J

Settings

flow profile aver leop

Link Joumey Time

“Vepa Curve
Stop line queus buid-
up & dischange

Smoothed SCO0T oyalic

01/06/2017



Linear Quadratic Regulator (TUC)

e Formulation:

minZ = Z( XIQX, +UlRu, )

k=0

k — cycle index;
X, — (= [X(K)]) queues on all links i by the end of each
cycle k

(state variable)
u, — (= [ui(k)]) adjustment made on green splits in cycle k
(control variable)
N

U, =09¢—90

Linear Quadratic Regulator

* The objective function is subject to the state equation for all i
% (k+1)=x (k) + Cld, (k) - 5 (k)]
» For source links:

X (k+1)=x (K)+ C| d (k) - s gé")}
e For intermediate links:

KKD=x(0+C| 3 B 900 a(k)}

| Vied(i) C

where J(i) is the set of links upstream of i ;
B; is the proportion of flow in j flowing into i
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Linear Quadratic Regulator
» The state equations can be summarised as
X, .1 =X, +Bg, +Cd,

for some appropriate matrix B (a ‘sparse’ matrix of ‘minus’
saturation flows for each link)

* We can derive the feedback control rule as the optimality
condition (setting d = 0; kK — o) of the control problem as:

(k) =gV — Lx(k)

g

where the gain matrix L can be derived through solving the
corresponding Bellman equation

Linear Quadratic Regulator
» The gain matrix can be determined as:
L=-(R+B'PB)"'B'P

* Where P can be solved (iteratively) from the following Riccati
equation

P=S+P-PBR+B'PB)"'B'P

* Note that L is generally non-diagonal (as a centralised
regulator) but sparse matrix (with most elements zero)

(k)= g — Lsc(k)
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Centralised strategies

« Derive control plans with consideration of the entire
system for global objective (e.g. lowest system-wide
delay)

* Improve global efficiency, while it may come at the
expense of computational effort, and communication
links...

« Centralised design may(?) also cause the underlying
system less robust in case of incidents (e.g. see Helbing,
Le, etc)

Control architecture

A central computer Local controllers
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Centralized control Decentralized control
structure structure
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Max-pressure controller (distributed)

» Define ‘pressure’ on phase i as a function of queue sizes
| P
wilk) = Q [,, EDY r,,,,-fJ :

i=1

where Q; is the saturation flow on |

X;

X

» ‘Right-of-way’ is assigned to phase has the maximum
pressure

Reference: Varaiya, P (2013) Max pressure control of a network of signalized
intersections, Transportation Research Part C, 36, 177-195.

Max-pressure controller (distributed control)

» Feedback control on queue sizes:

g(!l.‘:l — g‘l’v A L W(k) u‘,lf-') (_)J |:i,|f-‘l —i r,Jl,IJ":| .

i=1

while:
L is diagonal (the control system is distributed)
x refers to ‘pressure’ at the junction

(which is defined as a difference between the queues
measured at upstream and downstream of the signal)

Reference: Varaiya, P (2013) Max pressure control of a network of signalized
intersections, Transportation Research Part C, 36, 177-195.

01/06/2017



Inflows (with 10% c.0.v.):
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Experiment on a micro-platform

= How about on a microscopic platform with route choice?
= If incident(s) occur?

Traffic Signall
statiss control

plans

External traffic
TraC| signal control script

Figure 5.1: Traffic control interface of SUMO
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Routing algorithm
(iterative shortest path procedure)

= Construct an origin-destination
matrix following the previous
demand setting

= Each vehicle departs from its
origin, proceeds toward the
destination along the prevailing
shortest path

—} Link New route

= The path will be revised o 1

whenever the vehicle reaches
node based upon prevailing
traffic conditions (queues /
travel times)

Cyclic Max-pressure (Backpressure)

« Given the ‘pressure’ function:

Tout
wi(k) = Q; |:J.|.’.I - Z r'u.lJIJ":| .
Green splits are every cycle proportionally as:

exp{nw;(k)}

Vi(k) = i .
Z.,':"l (‘X|){I,’H‘.‘(l.')}

Transportation Research Part C, 58, 431-450.

Reference: Le, et al. (2015) Decentralised signal control for urban road networks,
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With vs without re-routing
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Effect of re-routing rate

= Assume some
vehicles would
not re-route
regardless of the
prevailing traffic
conditions...

Network delay reduced
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An incident occurs ...
= Suppose node 19

(and hence links 22
and 52) is down ...

—) Link

@ Intersection

With vs without re-routing
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Decentralised MPC ...

Examples of methods:

* Multi-agent MPC (de Oliveira and
Camponogara, 2010);

» Alternating directions method of
multipliers (ADMM, Reilly and
Bayen, 2015);

* Approximation with Principle
Component Analysis (PCA,
Rinaldi, et al, 2016) ...

Concluding remarks

= A performance comparison of centralised and distributed
control for urban road networks

= Significance of re-routing
= Could be due to the setting of TUC ...

= Consideration of incidents (resilience)
= Centralisation / coordination is needed

= Ongoing work:
= Decentralisation / decomposition
= Online solution algorithm
(with consideration of travel behaviour changes)
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