

≜UCL
Linear Quadratic Regulator
 The objective function is subject to the state equation for all i
$x_i(k+1) = x_i(k) + C[d_i(k) - s_i(k)]$
For source links:
$x_i(k+1) = x_i(k) + C \left[d_i(k) - s_i \frac{g_i(k)}{C} \right]$
For intermediate links:
$x_i(k+1) = x_i(k) + C\left[\sum_{\forall j \in J(i)} \beta_{ji} s_j \frac{g_j(k)}{C} - s_i \frac{g_i(k)}{C}\right]$
where <i>J</i> (<i>i</i>) is the set of links upstream of <i>i</i> ;
β_{ii} is the proportion of flow in <i>j</i> flowing into <i>i</i>

Linear Quadratic Regulator

• The state equations can be summarised as

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{B}\mathbf{g}_k + C\mathbf{d}_k$

for some appropriate matrix **B** (a 'sparse' matrix of 'minus' saturation flows for each link)

We can derive the feedback control rule as the optimality condition (setting d = 0; k → ∞) of the control problem as:

 $\mathbf{g}(k) = \mathbf{g}^N - \mathbf{L}\mathbf{x}(k)$

where the gain matrix ${\rm L}$ can be derived through solving the corresponding Bellman equation

UC

Centralised strategies

- Derive control plans with consideration of the entire system for global objective (e.g. lowest system-wide delay)
- Improve global efficiency, while it may come at the expense of computational effort, and communication links...
- Centralised design may(?) also cause the underlying system less robust in case of incidents (e.g. see Helbing, Le, etc)

Concluding remarks
 A performance comparison of centralised and distributed control for urban road networks
 Significance of re-routing
Could be due to the setting of TUC …
 Consideration of incidents (resilience)
 Centralisation / coordination is needed
 Ongoing work:
 Decentralisation / decomposition
 Online solution algorithm
(with consideration of travel behaviour changes)