
Effectiveness of the Two-Step Dynamic Demand 

Estimation model on large networks  

Guido Cantelmo, Francesco Viti 

Faculty of Science, Technology and Communication 

University of Luxembourg, UL 

Luxembourg, Luxembourg 

guido.cantelmo@uni.lu, francesco.viti@uni.lu 

Thierry Derrmann  

 Interdisciplinary Centre for Security, Reliability 

and Trust 

University of Luxembourg, UL 

Luxembourg, Luxembourg 

 

 
Abstract—In this paper, the authors present a Two-Step 

approach that sequentially adjusts generation and distribution 

values of the (dynamic) OD matrix. While the proposed 

methodology already provided excellent results for updating 

demand flows on a motorway, the aim of this paper is to validate 

this conclusion on a real network: Luxembourg City. This 

network represents the typical middle-sized European city in 

terms of network dimension. Moreover, Luxembourg City has 

the typical structure of a metropolitan area, composed of a city 

centre, ring, and suburb areas. An innovative element of this 

paper is to use mobile network data to create a time-dependent 

profile of the generated demand inside and outside the ring. To 

support the claim that the model is ready for practical 

implementation, it is interfaced with PTV Visum, one of the most 

widely adopted software tools for traffic analysis. Results of these 

experiments provide a solid empirical ground in order to further 

develop this model and to understand if its assumptions hold for 

urban scenarios. 

Keywords—o-d estimation; Two-Step optimisation; Quasi-

dynamic assumption; bilevel optimisation; GSM data; 

I.  INTRODUCTION  

Dynamic Traffic Assignment (DTA) models represent the 
current state of the practice for managing transportation 
systems. To be able to make accurate predictions about the 
network condition or the effect of new traffic policies, these 
models require a good knowledge of the travel demand, which 
is usually represented in the form of an origin-destination (OD) 
matrix.  

In order to generate this matrix, while traditional demand 
generation models combine survey data and statistical tools [1], 
[2],  more recent approaches have done a significant progress 
into including new data sources, such as Call Detail Records 
(CDR), GSM data, sensing data and geospatial data [3], [4]. 
Although these works showed that big data can largely 
improve the overall quality of the result, the estimated demand 
matrix is at most a concise representation of the regular 
demand patterns. Unfortunately, since dynamics of traffic 
systems are complex and depend on partially predictable 
phenomena such as weather conditions, daily demand patterns 
can substantially differ from the regular ones, because of 
structural and random deviations [5].  

These deviations can be corrected by using traffic 
measurements, such as loop detectors, to update the existing (a-

priori) OD matrix. This problem, which is known in literature 
as the Dynamic Demand Estimation Problem (called DDEP in 
this paper), searches for time-dependent OD demand matrices 
able to best fit measured data. It can be applied for both within-
day (intra-period) and day-to-day (inter-period) dynamic 
frameworks [6], as well as for offline (medium-long term 
planning and design) and on-line (real-time management) [7]. 
While for a detailed overview, the interested reader can refer to 
[8], we limit our discussion to recent works related to the off-
line DDEP.  

Classical approaches solve two interconnected optimisation 
problems, according to a bi-level formulation: in the upper 
level, time-dependent OD matrices are corrected in order to 
replicate the observations, while the lower level relates OD 
with path and link flows [8]. However, the resulting 
optimisation problem is highly underdetermined [9], and 
provides an accurate prediction only when the ratio between 
unknown and known variables (OD flows and traffic 
measurements, respectively) is close to one. From the 
modelling point of view, the easiest solution is to formulate the 
optimisation problem in a different way, in order to reduce the 
number of variables. This can be done, for instance, by 
introducing a parametric representation of the demand, as 
proposed in [10], or performing a Principal Component 
Analysis (PCA) [11]. Recently, Cascetta et al. [12] introduced 
the so-called “quasi-dynamic assumption”, which assumes that 
the generated demand for a certain OD pair is time dependent, 
while its spatial distribution is constant. Under this assumption, 
as demonstrated in [12], the DDEP problem becomes less 
underdetermined and more likely to find more robust results. 
Nevertheless, the authors point out that the resulting matrix 
will be “intrinsically biased”, since this assumption introduces 
an “intrinsic error”. To solve this problem, Cantelmo et al. [13] 
introduced a Two-Step procedure, which separates the problem 
in two sub-optimization problems. Through this procedure, 
authors correct sequentially generations and distributions in the 
demand matrix. In essence, the first step exploits the quasi-
dynamic assumption in order to perform a broad evaluation of 
the solutions space, while in the second step the estimated OD 
flows are further updated in order to reduce the intrinsic error.  

From the data-driven point of view, the most widely 
adopted procedure is to include new data sources, such as 
measured speeds [14], link density [15] and route travel time 
[16], within the Objective Function (OF) to be minimised. As 

mailto:guido.cantelmo@uni.lu


expected, by increasing the number of knowns in the 
optimisation problem, and by including information on the 
actual route choice, the solution reliability largely increases.  

Driven by these considerations, in this paper we implement 
the Two-Step approach, already presented in [13], to the 
network of Luxembourg, and we extend the goal function in 
order to include mobile network data within the DDEP. The 
contribution is twofold. On one hand, we show that the Two-
Step approach outperforms the standard formation on a real-life 
network. To support the claim that the model is ready for 
practical implementation, it is interfaced with PTV Visum, one 
of the most widely adopted software tools for traffic analysis. 
The second contribution regards the mobile network data. 
While these data have been widely adopted for generating 
dynamic OD matrix [3], their use within the OD/route flow 
estimation is still limited [17]. The main reason is the low level 
of precision of this information, which makes the match 
between observations and road segments quite challenging. In 
the proposed work, mobile network data are used to directly 
estimate the time-dependent demand profile, thus no matching 
is required.  

II. METHODOLOGY 

A. MAMBA-DEV Matlab package 

To be able to solve a DDEP on a large real-sized network, 
we developed a Matlab package for solving the DDEP using 
PTV Visum as DTA model (Demand Estimation for Visum - 
DEV).  

The package allows performing assignment-free dynamic 
or static OD estimation, using a deterministic and/or stochastic 
approximation of the gradient [13]. The model also includes 
the Two-Step approach, which is presented in the next section. 
While the MAMBA-DEV package has been designed for 
Luxembourg City, it can work with any network.  

B. Two-Step Approach 

While for a detailed overview of this model we refer to 
[13], in this section we briefly present its main characteristics.  

The standard DDEP, called “Single-Step” in this paper, is 
generally solved as an optimisation problem. Its formulation 
requires the specification of the OF, its variables and its 
constraints, which are related to feasibility and routeing 
conditions. Considering different types of measures and by 
adopting an offline approach, the OF can be formulated as: 
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Where l/ l̂  are the simulated values and the corresponding 

measurements on the links, n/ n̂  are the simulated values and 

the corresponding measurements on the nodes, x/ x̂  are the 
estimated values and a-priori information on the dynamic 

demand, r/ r̂  are the simulated values the and the 
measurements on routes, dn

* is the estimated demand matrix 

for time interval n and, finally, z :{z1, z2, z3, z4} is the 
estimator of the deviations between the simulated/estimated 
and the corresponding measured/a-priori values. The 
consistency between simulated traffic performances and the 
estimated demand is obtained directly by performing a 
dynamic traffic assignment (DTA). 

The applicability of Equation (1) is general, but has its 
shortcomings. Among others, when dealing with a large 
number of variables, Equation (1) collapses to a local 
adjustment of the a-priori OD flows, rather than a real 
estimation. As discussed in the introduction, this is one of the 
main reasons for which introducing the quasi-dynamic 
assumption sounds reasonable. On the one hand, this 
introduces an approximation, while on the other it allows the 
algorithm to avoid local minima.  

In the proposed Two-Step procedure, the first step aims at 
optimising the generation values of each zone in each time 
interval, while maintaining constant the dynamic trip 
distributions derived by the seed matrix. To achieve this goal, 
the objective function in (1) can be generally rewritten for the 
first step as: 
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Where En
O is the generation of origin zone O and time 

interval n, En
* is the generation vector containing generation 

from all origins in time interval n, Xn
* is the number of trips 

originated in O with destination D in time interval n and 
nSeed

OD
d ,

|  is the matrix probability distribution between traffic 

zone D and traffic zone O in time interval n.  

The goal of the first step is to act on the seed matrix in 
order to obtain a reasonable generation value before moving to 
the second step, in which the dynamic distributions are 
corrected according to (1) in order to reduce the intrinsic error. 

C. Including mobile network data in the Objective Function 

 As pointed out in the introduction, it is commonly accepted 
that including more information within the goal function leads 
to a more robust result for the DDEP. Clearly, this cannot be 
considered a general rule since, when different data sources are 
combined, the solution space of the OF can become more 
irregular. In this sense, mobile network technology, because of 
its spatial/temporal coverage and because of the great volume 
of information, seems an ideal data source for the DDEP. 
While the correlation between traffic demand and mobile data 
is well known [3], this source of information is hard to 
implement within the DDEP. When dealing with GPS 
information, one of the most critical elements is to match the 



GPS coordinates and the road network. Mobile network data 
provide at most the geographic position at connected antenna 
level, so no direct road network match is possible. However, by 
clustering antennas located on the border of each traffic zone, it 
is possible to count active connections that are entering or 
exiting the zones (i.e. the number of handovers). 
Unfortunately, mobile network data cannot be considered as 
the sole source of information for the DDEP, as they are 
subject to intrinsic errors such as the split of the user base 
between multiple network operators and the degree of activity 
on the network as well as the general mobile penetration rates. 
In this work, we use aggregated handover counts between 
antennas of 2G, 3G and 4G radio technologies of Luxembourg 
mobile network operator POST Luxembourg. The data consists 
of the hourly counts of connections being handed off between 
pairs of antennas, thus respecting users’ privacy. 

 
(a) 

 
(b) 

Figure 1: (a) Internal and External antenna clusters for Luxembourg 
City; (b) Emission flow from and to Luxembourg City. 

 

 We propose the following two criteria to exploit demand 
emission flows estimated through the mobile network data: 

1) Antenna clusters need to be large enough to minimise 
the “ping-pong” effect, i.e. repeatedly counting the 
same users ‘bouncing’ back and forth between two 
antennas; 

2) Cluster edges shall be positioned so as to maximise the 
difference between number of people entering and 
leaving the study area;  

Since we are focusing on Luxembourg City, we created two 
different clusters. One cluster captures the trips generated from 
the city to the external zones, while the other one captures 
those entering Luxembourg City, as shown in Figure 1.  This 
procedure can be easily extended to any urban area, in which 
mobile connection handovers can be used to calculate the flows 
exchanged between the study area and the external centroids. 
Although the profile showed in Figure 1b looks realistic, we do 
believe that to simply include the emission flows within the 
goal function may still lead to a biased estimation, since it is 
equivalent to over-imposing a certain time-dependent profile to 
the demand. Instead, we propose to use the difference between 
entering and exiting flow, as in Equation (3):  
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Where 
IntZonesGSM

nE 
and 

ExtZonesGSM

nE 
are the mobile 

connection handovers to the internal and external zones, 

respectively. Figure 2 show the profile of 
GSM

nE for the real 

data (2a) and the a-priori OD matrix (2b).  

 
(a) 

 
(b) 

Figure 2: (a) Profile obtained through the real-data; (b) Profile 
obtained through the 4-step approach. 

 

      As showed in Figure 2, the profile obtained by 
combining the classical Four-Step approach with a departure 
time choice model (2b) is comparable to the one obtained with 



the mobile network data (2a). We can also identify quite easily 
the two errors within the a-priori OD matrix. First, the average 
departure time for the morning peak is wrongly shifted in time. 
Second, there is a difference in the scale, on the y-axis. The 
reason is that, in this application, we calculate the OD flows for 
the morning and evening commute, thus the demand in the 
afternoon is highly underestimated. This suggests that, by 
including Equation 3 within the OF of the DDEP, we can use 
mobile network data as a soft constraint to correct the demand 
obtained through classical demand generation models. 

III. CASE STUDY 

Synthetic experiments have been conducted on the urban 
network of Luxembourg City (Figure 3). While real traffic 
measures are available in Luxembourg, authors believe that 
assessing the quality of the proposed algorithm in a controlled 
experiment is a fundamental step before moving to the 
practical implementation. 

 
Figure 3: Network of Luxembourg City, Luxembourg. 

The network, which consists of 2744 active links, 1480 
nodes and 17 traffic zones, represents the typical middle-sized 
European city in terms of network dimension. Moreover, 
Luxembourg City has the typical structure of a metropolitan 
area, composed of the city centre, ring, and suburb areas. OD 
flows are estimated over 24 hours assuming a 30-minutes 
departure interval. Under this assumption, the dynamic matrix 
contains 13872 variables to be estimated. The real matrix 
amounts to 239.966 trips, and with such an amount no 
congestion is expected on the network. Simulated measures for 
this network are available on a total of 32 counting sections – 
the links containing these sections are shown in red. Finally, 
the a-priori OD matrix, hereafter simply called Seed matrix, 
amounts to 171.060 trips, thus it significantly underestimates 
the number of trips in the network. 

The DDEP is solved using both the Single-Step (SS) and 
Two-Step (TS) approaches. In both cases, the well-established 
Simultaneous Perturbation Stochastic Approximation (SPSA) 
is the numerical solution method adopted for the optimisation. 
In order to reduce the computational time, we adopted the one-
sided version of this model. The interested reader can refer to 
[13] for more details on the solution algorithm. Similarly, we 
performed two different sets of experiments: 

Scenario 1: Only traffic counts are included within the OF. 

Scenario 2: Traffic counts and mobile data are included 
within the OF. 

Finally, the Root Mean Square Error (RMSE) metric is the 
estimator adopted to quantify the error.  

A. Scenario I: Only traffic counts 

We opted for an uncongested scenario to primarily assess 
the capability of the model in handling a large number of 
variables, while at the same time considering a smooth goal 
function. The gradient is calculated as the average of 300 
stochastic perturbations of the current matrix for the SS and 
100 stochastic perturbations for the TS model. As shown in 
Figure 4, results confirm that, when the number of variables is 
large, SS model performs a quite local adjustment of the OD 
demand. Specifically, to obtain a reliable estimation of the 
gradient, the number of stochastic perturbations should be 
approximately 10% of the number of variables [18]. This 
entails 1382 DTA simulations for each iteration (~46 hours).  

 

Figure 4: Goal Function trend 

By contrast, introducing the strict quasi-dynamic 
assumption, there are only 816 variables to update. As a 
consequence, even with fewer replications of the gradient, the 
estimation is more robust, and the improvement is network 
wide. This is shown in Figure 5, where the scatter of the link 
flows is presented, and in Table 1. Specifically, in Table 1 we 
reported the error with respect to real link speed and real OD 
flows, which are used for validation purposes.   

TABLE I.   

 Seed Two-Step Single Step 

RMSE Speed (Km/h) 
 

3.73 2.47 3.66 

RMSE OD (Veh/h) 

 
42.25 37 43.00 

 

It should be pointed out that, while the RMSE of the Seed 
may be considered low, we are considering in this experiment 
only morning and evening commute, thus a large number of 
OD/measures during the off-peak hours present a low error.  



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5: (a) Simulated vs Real link flows on the detector for the Two-
Step; (b) Simulated vs Real link flows on all links for the Two-Step; (c) 

Simulated vs Real link flows on the detector for the Single Step; (d) 
Simulated vs Real link flows on all links for Single Step; 

However, the resulting traffic pattern during the rush hour 
is substantially wrong, as shown in Figure 5, where we can 
clearly see that the Seed demand matrix is both overestimating 
and underestimating link flows. 

Finally, results in Table 1 provide another important insight 
on the quality of the results.  The SS model not only performed 
a local adjustment of the link flows but also increased the error 
with respect to the real matrix. By contrast, the proposed model 
is reducing the error according to all the performance 
measures.  

B. Scenario II: Including mobile network data 

In this subsection, we show the improvement related to 
using the mobile network data data within the goal function. In 
this case, the synthetic profile illustrated in Figure 2b has been 
used to simulate the mobile network data for the synthetic 
experiment. Results of this experiment are quite unexpected.   

TABLE II.   

 Seed TS SS 

RMSE Speed (Km/h) 
 

3.73 2.98 3.66 

RMSE OD (Veh/h) 

 
42.25 40.01 66.02 

 

As showed in Table 2, the error in terms of OD flows is, at 
the end of the estimation, larger than in the previous case, 
showing that, for this uncongested network, the TS approach 
manages to find a better solution without the mobile data. 
However, as reported in Figure 6, when mobile data are 
included within the OF, the number of iterations required for 
solving the DDEP strongly decreases.  

 

Figure 4: Goal Function trend, with and without GSM data 

As predictable, the same property is not observed for the SS 
model, which simply collapses on the closest local minima. 
However, when this model is combined with the mobile 
network data, the error on the link flows decreases with respect 
to the base case presented in Scenario I (the RMSE is 3% 
lower).  

A second and fundamental result concerns the stability of 
the estimated matrices. The RMSE of the OD flows between 
the solution of Scenario I and II are 27 and 48 veh/h for the TS 
and SS model, respectively. Although the Single-Step model 



has a small OF improvement, the distance between the two 
estimated matrices is twice the distance of those estimated 
through the Two-Step approach. This means that the Two-Step 
approach not only manages to have a larger OF improvement 
but also to provide more reliable results. These findings are in 
line with the conclusions already presented in [13]. In general, 
we can claim that, since the two steps approach sequentially 
reduces the dimension of the solution space while keeping a 
lower number of variables with respect to the conventional 
Single-Step approach, it will provide a more reliable estimation 
[9].  

IV. CONCLUSIONS AND FUTURE RESEARCH 

The motivation for the research conducted in this paper is 
twofold. First, we aimed to generalise the effectiveness of a 
two-step approach for the Dynamic Demand Estimation 
Problem already introduced in [13] for a general urban 
network. Second, we performed a systematic assessment for 
the network of Luxembourg City, a fundamental step in order 
to use the proposed methodology for real applications. More 
specifically, the proposed Two-Step approach is a simple 
procedure to iteratively reduce the solution space without 
increasing the problem complexity. Results presented in this 
paper suggest that this methodology is suited for improving the 
reliability of the estimated travel demand and for performing a 
broader analysis of the solution space with respect to the 
conventional approach. While this model has some similarity 
with the quasi-dynamic approach proposed by Cascetta et al. 
[12], by performing a double-optimization, it also manages to 
overcome limitations related to the so-called “intrinsic error” 
of the quasi-dynamic assumption.  

  From a practical point of view, the proposed model has 
been implemented within the MAMBA-DEV Matlab package 
for the OD estimation, which exploits PTV Visum as traffic 
assignment module. Thus, the proposed model can be easily 
implemented with other networks, and we can conclude that 
the model is ready for practice. On this point, authors 
incorporated mobile network data data as a soft constraint 
within the objective function, showing that this information 
largely increases the convergence speed.  

Straightforward steps to future work are (i) validating the 
proposed results for a congested network and (ii) using the real 
data for performing the Dynamic Demand Estimation on 
Luxembourg City. More long-term objectives are to further 
extend MAMBA-DEV, in order to account for a larger set of 
models, including algorithms suited for solving on-line 
estimation and prediction problems.  
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