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How Road and Mobile Networks Correlate:
Estimating Urban Traffic Using Handovers
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Abstract— We propose a novel way of linking mobile network
signaling data to the state of the underlying urban road network.
We show how a predictive model of traffic flows can be created
from mobile network signaling data. To achieve this, we estimate
the vehicular density inside specific areas using a polynomial
function of the inner and exiting mobile phone handovers
performed by the base stations covering those areas. We can
then use the aggregated handovers as flow proxies alongside the
density proxy to directly estimate an average velocity within an
area. We evaluate the model in a simulation study of Luxembourg
city and generalize our findings using a real-world data set
extracted from the LTE network of a Luxembourg operator.
By predicting the real traffic states as measured through floating
car data, we achieve a mean absolute percentage error of 11.12%.
Furthermore, in our study case, the approximations of the
network macroscopic fundamental diagrams (MFD) of road
network partitions can be generated. The analyzed data exhibit
low variance with respect to a quadratic concave flow-density
function, which is inline with the previous theoretical results
on MFDs and are similar when estimated from simulation and
real data. These results indicate that mobile signaling data can
potentially be used to approximate MFDs of the underlying road
network and contribute to better estimate road traffic states in
urban congested networks.

Index Terms— Mobile network, cellular, traffic state, traffic
flow theory, macroscopic fundamental diagram.

I. INTRODUCTION

OBILE networks are ubiquitous. Today there are more

than 6 billion mobile subscribers worldwide that are
continuously online [1]. Those users produce an unprece-
dented amount of information that can be used to study
various aspects of our everyday life. Over the past decade
there have been various research efforts to extract useful
knowledge from this data. More recently, research challenges
have been launched providing access to large datasets that
have been released by telecommunication operators [2], [3].
In their survey on the analysis of data from mobile networks,
Calabrese et al. [1] identify numerous topics of interest and
open challenges in this domain. They include the analysis and
understanding of human mobility patterns, such as the usage
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of mobile phone data as a complementary source for estimat-
ing dynamic traffic conditions. Their list of open challenges
includes characterizing the interplay between mobile networks
and the actual mobility of users, as well as privacy and data
anonymity considerations. An important work discussing the
feasibility of using mobile phone data to estimate traffic states
was proposed by Rose [4] back in 2006, in particular using
handovers, i.e. the transfer of a phone’s connection between
base stations. While highlighting the potential of mobile phone
data for traffic applications, Rose discusses the need for a
systematic assessment of the quality of the data from various
radio access technologies.

This gap was closed by Becker et al. [5], who show the
stability of handover patterns with respect to road, weather
and hardware conditions, and Gundlegard and Karlsson [6],
who compared the utility of 2G and 3G handover patterns for
travel time estimation and showed the superiority of 3G for
this purpose.

Generally speaking, the newer radio access technologies
(i.e. 3G and 4G/LTE), which significantly increase the density
of cells and the volume of data traffic, thus improving the
granularity of the mobile network data and making it a viable
alternative (or complement) to traditional Traffic Information
Systems (TIS). Although it has been shown that mobile data
provides a good indicator to estimate and predict traffic states
on highways [7], finding accurate predictive traffic models in
urban networks remains a challenging task to due to the highly
dynamic nature of traffic.

Naboulsi et al. [8] confirm this fact in their recent extensive
survey of mobile data analytics, in agreement with the earlier
survey work by Steenbruggen et al. [9].

From a traffic flow theory perspective, urban network traffic
states can be described in an aggregated form by the so-called
Macroscopic Fundamental Diagrams (MFD), or often also
called Network Fundamental Diagrams, as described by
Geroliminis and Daganzo [10] and Mahmassani [11], [12].
MFDs serve to describe the flow, density and velocity
relationships of the cumulated data from multiple detector
sources within a partition of the network, provided that traffic
states and road capacities are relatively homogeneous. These
models therefore allow the estimation of traffic conditions
for partitions of the network and enable traffic manage-
ment techniques such as perimeter or coordinated intersection
control [13], [14] and gating [15], [16].

On the practical side, obtaining data that exhibit MFD char-
acteristics is difficult, and the traffic flow theory community
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has recently launched a challenge to compile suitable empirical
data for MFD modeling [17]. In this context, we see potential
for mobile phone data, in particular signaling data provided by
mobile network operators, to contribute to detect and quantify
urban mobility patterns. With the latter type of data, we can
follow the intuition that the mobile network observes flows
in the form of handovers, similar to the way conventional
traffic sensors do. By linking the mobile network as data
source to the concept of MFDs, we can address two of the
challenges identified by Calabrese et al. [1]: 1) we characterize
the interaction between road and mobile networks, and 2) we
preserve user privacy as we estimate aggregate flows via
aggregate data sources.

In this work, we want to exploit the correlation between
the road traffic state and the observed behavior of the mobile
network in analogy to the concept of MFDs, i.e. we want
to approximate MFDs from mobile network signaling data.
In previous work we have shown that urban mobile network
clusters exhibit MFDs if vehicles can be identified from mobile
networks users [18], [19]. In those works, we simulated han-
dover information (vehicles only) and showed that they are a
good proxy for traffic flow estimation. More recently in [20],
we showed the feasibility of traffic state estimation using a
real cellular data set provided by a local telecommunication
operator. We proposed a model based on a common density
proxy function along with a single regression model that has
been applied to highway and mixed clusters. The model has
been validated using Floating Car Data (FCD) recorded over
the same period. The results show that the model works well
for the highway and transit clusters but proved to lack of
descriptive and predictive power for purely urban clusters.

To overcome this gap and show that MFDs can be mod-
eled for urban clusters using cellular handover data, we will
propose a novel methodology evaluated in both a simulation
and a real data study. In the following of this paper we
introduce the related work in this field and the necessary
concepts.

II. RELATED WORK

Mobile network handovers exist in two varieties: passive
handovers of phones that are currently not in an active phone
call or data session; their location is known to the network
at Location or Region Area (LA/RA) level, encompassing
potentially hundreds of mobile cells. On the other hand, active
handovers of phones in a connected state provide information
of the exact currently associated mobile cell.

A lot of research has been focusing on passive handovers,
i.e. coarse-grained Location Area Code (LAC) updates which
can be useful in predicting highway travel times [8]. The
main work in this area is a study by Janecek et al. [7], who
combine location updates to the handovers of active calls
along a specific highway in Austria. They study the rate
of LAC updates from idle mobile phones and augment this
knowledge with the rate of active connection handovers to
clearly identify and precisely locate the source of congestion.
However, this methodology is valid for highways only and
it is difficult to extract the required data for larger areas.
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In general, passive handovers (LAC updates) are difficult to
use for state estimation in urban environments. They are better
suited for long-range travels, as studied by Hui et al [21].
In this work, we want to investigate how mobile network data
can be used for estimating congestion within cities, by using
only aggregated active connections. For these connections,
the precise cell — rather than a large location area — is
known, leading to a much higher spatial resolution even when
computing aggregate statistics. In this vein, Bar-Gera [22]
ran a study on using active connection handovers to predict
freeway travel times, using probe mobile phones to record
both the handover events and travel times and comparing the
measurements to loop detector data. Again, this study focused
on highways and not on urban settings.

Another limitation of cellular datasets for traffic flow esti-
mation is that they include mobile and static nodes. To over-
come this limitation, Caceres et al. [23] proposed a set of
models to infer the volume of vehicles from the cellular data
by calibrating them with data collected by loop detectors.
On average their best model achieves an absolute relative error
of less than 20% for highway scenarios. They conclude that
cellular data can be used as a complement to traditional fixed
sensors to enhance the available information for mobility mon-
itoring. Generally speaking, there is little research regarding
traffic states in urban environments, as Naboulsi ef al. identify
in their survey [8]. The main study in the urban traffic area was
done by Calabrese et al. [24], who performed analyses of the
Telecom Italia dataset for the city of Rome, in particular Erlang
data (a unitless metric of the intensity of mobile network
usage) alongside taxi and bus data. This allowed them to build
a platform to estimate what they call the pulse of a city, and
to compare the availability of public transportation to their
estimated population location density.

The correlation between road traffic states and the observed
reaction of the mobile network is an interdisciplinary topic,
connecting transportation and telematics. It is therefore sen-
sible to rely on concepts from traffic flow theory such as the
Macroscopic Fundamental Diagram (MFD), which describes
the traffic profile of an urban area from a macroscopic,
aggregated perspective. MFDs are synthetic but powerful
metrics that quantify and explain the interaction between
road capacity, travel and driving behavior-related parameters
such as routing/rerouting, as well as characteristic vehicle
speeds and car following behavior. It postulates that if a
sufficiently large amount of data about traffic states in a
network is collected, and the (sub) road network topology has a
sufficient level of regularity in terms of route flow distribution,
then state variables such as vehicle density and the total
network throughput are clearly related by a concave function.
This function expresses the transition between uncongested
conditions to congested states, characterized in urban systems
by frequent conditions of queue blocking and gridlock phe-
nomena. Theoretical and empirical studies contributing to gain
insight into the properties of MFD focused on deriving rela-
tions starting from analytical and simulation-based Dynamic
Traffic Assignment theory [11], on assessing the impact of
traffic control [25], and on capturing hysteresis phenomena in
congested networks [26].
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Fig. 1. Luxembourg City road network partitions used in both simulation
and real data study.

III. METHODOLOGY

In this work we estimate traffic flows from a 4G mobile
network dataset. The dataset is composed of two components.
The first one is the position of LTE base stations (eNodeBs)
and the corresponding cell identifiers hosted on each base
station. The second component is the number of handovers
of active connections between any given cell pair per hour.

In the remainder of this paper we will refer to the handovers
within a set of cells as inner flows (i) of that set, and
to the handover count leaving a set of cells as its exiting
flows (o). Both metrics are scaled into [0, 1] with respect to
their daily maxima. We will also refer to the traffic state v as
the space-mean of the ratio between actual velocity and the
legal speed limit (0 = 0jimir ). Further details on the different
datasets used will be provided in Sections IV-B and V-A.

We want to establish a model in the form of v = ¢ + &,
i.e. the fundamental flow-density relationship for partitions of
the road network, in analogy to the concept of MFDs. Since
in mobile networks the phone’s precise serving cell is only
known during an active data or call connection, we cannot
access the density of mobile phones directly (as the majority
of them typically are in a passive, disconnected state). Thus,
we propose a three-stage approach: first, we partition the road
network in areas that are large enough to capture the traffic
dynamics of MFDs. Next, we model each partition’s density
using handovers within and from the partition. Finally, we use
linear regression to estimate the traffic state from exiting
flows and approximated density, thus optimizing the regression
coefficients globally for all time intervals and partitions.

A. Stage 1: Network Partitioning

In this article, we will focus on theoretically and empirically
studying the traffic and mobile networks of Luxembourg
City'. Fig. 1 shows the partitioning we opted for, which
we will use both in the simulation and real-data studies.
The study area covers approximately 45 km?. According to
Geroliminis and Daganzo [10], MFDs emerge in areas larger
than 10km?. Thus, we opted for 4 partitions, representing the
main geographical zones of Luxembourg City, i.e. physically

I Center coordinates: 49.611634, 6.129451

separated plateaus, independent from the number of flows.
Note, however, that road network partitioning can also be
done algorithmically and depending on the flows, e.g. using
the normalized cuts [27] or spectral clustering algorithms [19],
or be based on data concerning mobile phone calls [28], [29].

B. Stage 2: Traffic State and Density Models

We want to define density and flow proxy functions to
predict the traffic state in analogy to the fundamental equation
of traffic flow (v = g + k). The goal is to obtain an estimate
of the current traffic state v, the velocity factor relative to
free-flow conditions, within the partition. To this end, we use
each partition’s scaled exiting flows (o) and a density proxy
function characteristic of it — referred to as k(i, 0) below — so
as to gain an expression of the traffic state akin to the funda-
mental equation of traffic flow. We can obtain this expression
by using a linear regression with a logarithmic transformation
of the variables, turning the sum into the desired ratio:

log(v) ~ a log(o) + b log(k(i, 0)) + ¢ (1)
oa
v~ kG P exp(c) 2)

In the formulation in Eq. 2, we require as a last component
a density modeling function k (i, 0) based on the scaled inner
and exiting flows (i, o € [0, 1]) of a partition. We propose to
express this relationship using a parsimonious model, a poly-
nomial with interaction between inner and exiting flows i, o
of the partition. The degrees (p;, po, Pix> Pox) and coefficients
(ci, ¢x, co) are the model parameters characterizing the behav-
ior of each partition:

k(i,0) :=c¢; i’ + ¢, iP* oP* ¢, oP° 3)

Thus, we have three global parameters that are shared
between all the partitions ([a, b, c¢]) and need to be estimated
to link the flow and density proxy functions into a traffic state:

= 0" 4)
= k(i,0)" (5)

bt BN

The unit of k is (veh. m_l)*%. An approximation of the
space-mean density p with respect to the space-mean speed
limit velocity vyini; 1S given by:

P =k(i,0) 0" B ! (6)

Fig. 2 gives an overview of our full model in graphical
form. The shaded circles represent observed variables (in the
training set) and the unshaded circles are latent estimated
parameters or dependent variables in the case of k. For each of
the N partitions, we estimate the parameters of the polynomial
density model k, i.e. the p and ¢ parameters. Its inputs are the
scaled inner and exiting handovers i and o for each interval.
The density & is then used alongside o as input for the linear
regression model, that is globally parameterized (i.e. for all
partitions and across the entire time range 7') by its coefficients
a, b and c. Essentially, we approximate density, then use the
flow-density relationship to estimate the traffic state.
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Fig. 2. Graphical representation of the model: p and ¢ are characteristic of

each partition, [a, b, c] are common parameters.
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C. Parameter Estimation

In order to estimate the parameters (p;, pix, Pox, Po) and
coefficients (c;, cy, ¢,) of the density proxy polynomial of each
partition (Eq. 3) we implemented a hill-climbing optimizer.

Fig. 3 shows how the data set is used in this
approach. We start from a random vector of density poly-
nomial parameters in [0, 2]. During each iteration, we update
the density parameter by adding a random offset sampled from
Uni[—0.01,0.01] to a single parameter. Next, we run linear
regression on our model (Eq. 2) and evaluate the resulting Root
Mean Square Error (RMSE) of the validation set. The goal
is to find the density proxy polynomials of each partition that
allow the best regression performance. We accept parameter
updates that lead to a lowering in validation RMSE, and that
yield @ > 0 and b < O in the linear regression step. The
latter conditions are to assert that the density model can be
interpreted as intended, i.e. k(i, 0) is a directly proportional
proxy of the true density and & = § = k is respected.

D. Validation Techniques

In order to validate the model, we evaluate its predictive
power on test data sets. We use the same methodology —
i.e. partitioning and prediction model — for both a simulation
and a real-world study so as to be able to compare them,
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and to be able to quantify the impact and limitations of the
simulation.

IV. SIMULATION STUDY
A. Simulation Environment

The simulation scenario we base our study on is the LuST
scenario by Codeca et al. [30] for the microscopic traffic
simulator SUMO [31]. The scenario provides 24 hours of
calibrated mobility consisting of almost 300000 vehicle trips
in a wider area around Luxembourg City (155 km?). As we are
studying urban environments only, we limit our study to the
inner city (within the highway ring), approximately 50km?.
We opt for this validated scenario in order to be able to
compare our results to the corresponding real data.

The VeinsLTE framework by Sommer er al. [32] and
Hagenauer er al. [33], realizes the connection between the
microscopic road traffic simulation SUMO and the commu-
nication network simulator OMNeT++ [34], simulating the
LTE connectivity of cars or their drivers.

Through VeinsLTE, the SUMO simulation is synchronized
with the OMNeT++ communication simulator [34] to reflect
the mobility of vehicles inside the mobile phone network.
That means that SUMO simulates the movement of vehicles,
while OMNeT-++ computes signal strengths, connectivity
and communication of the moving vehicles. More precisely,
the LTE network is simulated using the SimuLTE library [35],
to which we added a simplified implementation of handovers
based on Signal-to-Noise Ratio (SNR). On the other side,
SUMO provides the traffic demand and microscopic modeling
and we use it to generate Floating Car Data (FCD) for
validation purposes. The identifiers of vehicles are matching
between both simulators and thus allow to map signal strengths
by routes taken. The LTE network configuration consists in
mapping 113 eNodeBs (LTE base stations) to the simulation
coordinates. The original coordinates of the eNodeBs (with
small noise offsets) were provided by POST Luxembourg.
Note that each eNodeB hosts multiple cells, but that the
simulation does not account for the precise associated cell
since we have no information regarding the different cell
coverage directions and areas. The simulation framework,
LuST-LTE, is published in [18].

B. Artificial Datasets

From the SUMO simulator, we obtain vehicle positions and
velocities, i.e. simulated floating car data. This information is
augmented with the currently connected cell, allowing us to
compute the Space-Mean Traffic State v = (0 = Upax) Within
the coverage area of a set of mobile base stations.

From OmNET++ and SimulLTE, we extract the number of
handovers between cell pairs observed. Since we know the
mapping between base stations and road partitions, we can
compute the inner flows (i) and exiting flows (o).

In order to construct the data set, we ran the scenario
with 50% re-routing probability of vehicles and 300 second
re-routing interval, which were the most realistic parameters
according to the validation by Codeca et al. [36]. The pen-
etration rate of vehicles in active calls was defined as 1%,
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Fig. 4. Simulation study mobile network macroscopic fundamental diagrams: flow-density relationships by partition.

which is in line with a previous study by Caceres ef al. [23].
The data set split was defined as a 50-50 split of the data,
where validation and training sets both make up 25% and the
test data is 50%. We opted for this split because otherwise
modifying the demand and running an additional simulation
day would have made the prediction error directly dependent
on the degree of modification of the demand distribution.

As temporal scale, we chose 1 hour, yielding sufficient
number of training and test data points (48 of each, i.e.
12 hours with 4 partitions), and matching the real data that
we will study in Sec. V.

C. Results

As described in Section III-C, we estimated each partition’s
density proxy polynomial functions and the regression coeffi-
cients jointly using a hill-climbing optimizer.

1) Mobile Network MFD Proxy: Figure 4 shows the
flow-density relationship resulting from the parameter estima-
tion (as described in Sec. III-C). We can see that Partitions 0,
1 and 2 show a tendency of saturation, and similar profiles
in general. The resulting density proxy polynomials, however,
differ strongly between the partitions, meaning that different
ratios of inner-to-exiting handovers are characteristic of their
traffic state profiles. The MFD of Partition 3 on the other hand,
exhibits a quasi-linear flow-density relationship, indicating that
this partition does likely not reach critical capacity and thus
there is no reduction in flows caused by congestion. Thus,
we do not observe the descending branch of the flow-density
relationship, as we do for the other partitions. Overall, we do
not observe the very harsh congestion MFD profiles that would
be produced by grid-lock phenomena, but this is not the case in
Luxembourg City, and is in line with other real-world results
from other cities. The fact that these smooth, low-variance
profiles result from our methodology is a first encouraging
result, as they match the expected MFD shapes.

2) Prediction: Fig. 5 shows the model predictions on the
simulated data. On the y-axis, we see the actual mean traffic
states of a partition during a 1-hour window, as computed by
SUMO. The x-axis represents the predictions computed by
the model using the simulated LTE signaling data, namely
the inner and exiting flows (i) and (o) and the derived
density proxy (k). The blue line shows the trend between
both measures, which should ideally coincide with the green

= Trend
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N

o

o
®

Simulated traffic state: = v;,,,)

o
>

07 08 09 1.0 1.1 12 13 14
Estimated traffic state: g+

Fig. 5. Simulated mobile data-based traffic state predictions vs ground-truth
simulated floating car data (12 hours of test data for 4 partitions).

identity line. Since trend and identity lines are close, and
the variance (error) appears to be stable across the range of
true traffic states. We can conclude that the model fits the
data reasonably well, with the exception of an outlier at the
lowest tested traffic state, which is likely due to the absence
of sufficient training data in that region. The Mean Absolute
Percentage Error (MAPE) is 10.02%, which is an encouraging
result given the simplicity of the proposed model and the low
amount of training data.

D. Limitations

There are several limitations in the simulation study. On the
road network side, there are only vehicles, no pedestri-
ans. There are also no stationary users, that might impact
mobile network handovers by moving minimal distances and
triggering ping-pong handovers. As our model takes into
consideration aggregated within- and exiting partition flows,
short-distance pedestrian trips will mostly happen inside a
partition, not between them, and can most likely be captured
by the density proxy function.

On the mobile network side, there is the inherent error of our
model of purely SNR-based handovers versus real handovers,
that are consistently more complex in nature. Further, we only
simulate the LTE network connectivity, thus omitting the other
radio access technologies, which influence handover behavior
as well, e.g. through interference and intra-RAN handovers.
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Fig. 6. Normalized number of handovers observed in the study area vs.
number of floating car data entries.

The fact that we only associate vehicles to eNodeBs, not
cells, leads to an additional error. Most importantly, we have
a static penetration rate of 1% of vehicles in an active
connection. While this is a realistic percentage on average,
it is dynamic in reality in the course of a day as described
by Caceres et al. in [23]. However, for this simulation study,
we focused on the general feasibility of handover-based traffic
state estimation using our methodology, and not as much on
the precise attainable error. Thus the limitations above should
be considered but not overvalued.

Having shown the performance of the model on simulated
data, we will now evaluate it using real data to show its
performance without the simulation limitations.

V. REAL DATA STUDY
A. Datasets

1) Ground Truth (Floating-Car Data): As ground truth
data, we use Floating Car Data (FCD) that was made available
for a whole week at the end of September 2016. This is
a set of time-stamped vehicle positions and travel speeds
which were collected in the area of Luxembourg City, and
consists of 600 trips and 220000 GPS data points. In particular,
we are interested in Traffic States, i.e. the ratio between
actually driven speeds and the speed limit (v = v;;4,). Thus,
we performed map-matching on the FCD to obtain the values
of vjimi; for every vehicle GPS data point.

2) Mobile Data (LTE Handovers): The mobile dataset
contains aggregate data from 436 LTE (4G) cells within
Luxembourg City. The data consists of the number of han-
dovers between cell pairs per hour. The data was made
available for the same time period as the FCD. Fig. 6 shows
that the number of handover and floating car observations
correlate, except for the off-peak daytime, when there are
relatively more handovers, likely due to pedestrian movement
and increased mobile phone usage. The strong correlation
(Pearson-p = 0.86) is a main motivational aspect to our work,
and we found similar correlations between mean travel speed
and artificial handover counts in previous studies [37].

3) Mapping FCD to the Mobile Network: In order to enable
the use of FCD for validation purposes, we need to map
the most likely associated mobile network cell to each FCD
data point. Fig. 7 shows an example of the method we used:
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Fig. 7. Floating-car data and mobile network mapping: Every vehicle position
is matched with its most likely associated mobile cell (cf. Sec. V-A3).

First, we can easily determine the nearest Base Station (BTS)
of each location by distance. In the example, that is BTS1 for
the first three floating car data points, and BTS2 for the next
three. In general, a BTS hosts multiple mobile network cells
emitting into different directions, e.g. cell 1, 2 and 3 for
BTSI1 and cells 4 and 5 for BTS2. From a FCD trajectory
we can thus identify a sequence of base stations, i.e. a set
of cells potentially covering the vehicle trajectory. Then,
in order to identify the single, most likely visited cell sequence,
we choose the most frequent cell transition during that day to
be the likely cell pair visited. That way, we build a chain
of visited cells over the entire trip. In the example above,
the most likely cell transition (handover) is 3 — 5, because
most handovers are between these two cells. Thus, we pick
these two cells as the most likely occurred sequence.

Using this method, we get a one-to-one mapping between
each FCD data point and a cell, i.e. the cell that the driver’s
phone was most likely connected based on the current loca-
tion. This allows to compute road traffic statistics relative to
the connected cell. In the last step, to compute the Traffic
State variable v, i.e. the ratio between the actual observed
link speeds and their respective speed limits, we perform
map-matching of the Floating-Car Data entries to the Open-
StreetMap (OSM) road network to obtain the speed limit at
each entry.

Finally, the resulting merged data set contains the partition
number, hour of day, inner and exiting flows ([i, 0]) and the
traffic state (v).

B. Results

Using the merged data set as described above, we trained
our model as described in Section III on the data of Monday,
Tuesday and Wednesday, validated it on Thursday and tested
it on Friday data.

1) Mobile Network MFD Proxy: The linear regression
model resulted in the following parameters:

a=0.26
b=-0.32
c=0

Since there is no intercept (¢ = 0), the scale factor is 1
(i.e. exp(c) in Eq. 2). Thus the prediction equations of the
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TABLE I

REAL DATA STUDY: PEARSON CORRELATION BETWEEN
ESTIMATED AND REAL TRAFFIC STATES BY PARTITION

Partition Pearson—p
0: Kirchberg 0.24
1: Cessange 0.63
2: Gare 0.53
3: Merl 0.58

space-mean traffic state v proportional to the space-mean
velocity v yields the direct ratio of g -+ k:

0026
Vv

~ om
We plot the MFDs given by § = 0°-20 and k = k%32 in Fig. 8.
Unlike in the simulation study, all the MFDs exhibit very
low variance and, as is expected, they all follow a concave
shape as the outflow rate saturates at increasing density levels.
Partition 1 (green plot) exhibits this behavior clearly.

The lower variance is likely due to the larger training set,
as well as the larger number of handovers observed in the real
world in comparison to the simulation, reducing the impact
of noise. We can also see that there is no severe congestion
in the network, caused by possible grid-lock phenomena, that
would manifest itself in the descending branch of the MFD
diagram. Instead, we only observe saturation of the network.

2) Correlation and Prediction: Table 1 shows the Pearson
correlation coefficient between the model’s predictions and the
real traffic states observed from the FCD. We observe weak
to moderate correlations for all four partitions, highlighting
the information content of the mobile network MFDs. The
more heterogeneous Partition 0 shows the weakest fit, and
the construction of tramway tracks was ongoing during the
study period. With a data-driven network partitioning method,
the observed results could likely be improved, as presented
in works by Ji and Geroliminis [27], Lopez et al. [38] and
Saeedmanesh and Geroliminis [39]. This point will be further
discussed in Sec. VI.

In Fig. 9, we can see the scatter of predicted and true traffic
states. We can see that the error appears to be independent
from the traffic state, which is likely due to noise in the
FCD and the relatively low resolution of our data set. The
Mean Absolute Percentage Error (MAPE) amounts to 11.12%,
which is comparable to other mobile network-based traffic
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Fig. 9. Real data study: mobile data-based traffic state predictions vs
ground-truth floating car data (24 hours of test data for 4 partitions).

state estimation techniques [8], but in an urban setting and
with a much more interpretable model.

C. Limitations

The main limitation of our data sets is the temporal aggrega-
tion resolution of 1 hour of the mobile network data set. How-
ever, we are confident that the results will transfer onto higher
temporal resolutions, and will go into some of the specific
reasons of this in the following Sec. VI. Another limitation
is the low amount of congestion observed in both studies.
However, in previous work, we observed that in deliberately
congested situations, there is evidence that the mobile network
data also reflects low-throughput, high-density situations, i.e.
the descending phase of the MFD [19]. In that work, the aim
was to deliberately generate grid-lock conditions, while in this
study, we opted for realistic demand to be able to compare
simulation and real data outcomes. In Sec. VI, we discuss the
aspect of congestion further.

The results achieved in this work considering urban areas
are much better than previous work using real-world data [20],
where we encountered very low correlation in some of the
non-highway partitions. Thus, we believe that the polynomial
density model introduced in this work is the key to adequately
estimating urban MFDs from mobile network signaling data.

VI. DISCUSSION

The main promising result of this work is that even in
complex, realistic networks with heterogeneous zones and
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unequally spaced mobile base stations, mobility patterns
emerge from mobile phone data. The density proxy functions
and MFDs we computed proved to show significant predictive
power, leading to a MAPE of 11.12% on real data, which
can compete with prior studies on (less complex) highway
scenarios [7], [8], [23].

As expected, the real data prediction errors exceed those
from the simulation run. This is due to the various limitations
and simplified aspects in the simulation, avoiding e.g. sta-
tionary users and ping-pong handovers. Generally speaking,
the simulated results were surprisingly similar in prediction
quality to the real-data ones, which gives rise to a promising
direction for future work.

The most important questions that arise from this work
are whether complete MFDs can be extracted from mobile
network data if there is a significant amount of congestion,
and for which spatio-temporal scale this is feasible.

Regarding the first of these questions, we have confirmed
the emergence of flow-density proxy relationships similar to
MFD in the uncongested and saturated branches, as partially
observed in the simulation study and more clearly in the real
data study. The fact that our urban study regions do not exhibit
heavy congestion and thus do not produce the descending
branch of the flow-density diagram is a limitation of this work.
However, in previous simulation work involving artificially
high congestion, we were able to observe the descending phase
of the MFD as traffic enters the congested regime [19]. That
study included also the highway ring of Luxembourg city,
and 15 partitions overall. The congestion was introduced by
lowering the re-routing probability of vehicles in the SUMO
simulator to 10%, partially causing gridlock, whereas in this
study, we used the setting of 50% on which Codeca et al.
based their calibration and validation [36]. In this work, using
the calibrated demand allowed us to compare real-data and
simulation results. Congested traffic conditions ought to be
studied further in future work, to allow comparing mobile
data-based results with studies on loop detectors by Buisson
and Ladier [40] and Geroliminis et al. [41]. It is critical
to investigate how precisely density can be approximated
with mobile networks in low-throughput traffic conditions,
to verify whether distinguishing between low and high density
situations is possible.

With respect to the second question, i.e. that of
spatio-temporal scalability, Geroliminis and Daganzo [10]
have indicated 10 km? as lower bound on the spatial scale

;
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Comparison of mobile network MFD approximations: Normalized flow-density relationships by partition.

for the emergence of MFD from conventional loop detector
signals. Therefore, in this study, we opted for creating 4 par-
titions with an average area of 12km?. However, it would be
necessary to investigate the impact of partition size on the
flow-density approximation and their variance, and to evaluate
the temporal scale at which the traffic states can be reasonably
estimated from handover counts when using real-world data.

Fig. 10 shows the differences between the MFDs generated
from both studies. For this purpose, we scaled all flow and
density proxies into the ranges [0, 1] so as to be able to
compare both curves. The difference between both studies’
results is surprisingly low, as they follow similar, mostly linear
trends in partitions 0 and 3, and approaching saturated states in
partitions 1 and 2. This indicates that the impact of ping-pong
handovers, pedestrians and stationary users is not as high as
feared, supporting the utility of handover data for mobility
studies. Both studies also yielded comparable space-mean
density values p € [0.015,0.05] % These mean density
values also indicate that the observed congestion is not severe
or covering the majority of any partition, as can also be seen
from the plots in Fig. 10 that reach the saturated but not the
descending phase.

While there are some differences between reality and sim-
ulation, we could show the predictive power of MFDs in both
studies. However, we could also observe the need to partition
the network in a more homogeneity-based approach. While in
past studies [19], [20], we focused on clustering the mobile
network based on handovers and partitioning the road net-
work according to these clusters, we have now identified that
going in the opposite direction (road network first) is a more
promising method. Different approaches of partitioning road
networks into homogeneous partitions have been published
and are being used [27], [38], [39]. The methodology in this
work would certainly benefit from such improved partitioning,
and we are convinced that with higher temporal resolution data
and homogeneity-focused spatial partitioning, the correlation
between road and mobile networks will even be stronger.

VII. CONCLUSION AND PERSPECTIVES

In this work, we have proposed a novel methodology to
link mobile network signaling data to the underlying road
traffic network. We have shown that it is possible to compute
approximations of the road network partitions’ Macroscopic
Fundamental Diagrams (MFDs) using only aggregated mobile
phone handover counts. To the best of our knowledge, this is
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the first work to show that this link exists and that it can be
reliable for real-world data in urban areas.

We first evaluated our methodology in a simulation study,
which was limited by the absence of pedestrians and the
difficulty of adequately simulating the demand in the network,
yielding a low Mean Average Percentage Error (MAPE)
of 10.2% in prediction. As a next step, we generalized our
findings using the corresponding real-world data sets. While
estimating the traffic states observed in the Floating Car
Data (FCD) using mobile signaling data from the POST
LTE network, we achieved a MAPE 11.12%, which compares
well with previous studies (even those focusing on highways
only) [7], [8], [23], but with the added advantage of being a
simple, easily interpretable model. The interpretability stems
from the fact that the model only uses partitions’ inner and
exiting handovers as aggregate measures, and yields approx-
imate measures for space-mean density, velocity and flows.
The approximated MFDs exhibit low variance with respect to
a concave flow-density function, which is in line with previous
theoretical results on MFDs [41].

We also compared the resulting flow-density relationships of
the simulation and real-data studies, and were able to show that
they match and that the absence of pedestrians and stationary
users from the simulation is of little impact. These results are
very encouraging as they show that the presented methodology
is able to capture the traffic dynamics independently from the
moving-to-stationary user ratio, at least in the low-to-moderate
congestion situations given in Luxembourg City. The fact that
pedestrian signals do not significantly influence flow-density
approximation also lends more credibility to previous results
of simulation studies, where we showed that mobile networks
can also detect situations of low throughput and high traffic
density [19].

Using only two input variables from a set of mobile network
base stations, it is possible to express their coverage area’s
traffic profile and make reasonably precise predictions of its
traffic state. In this context, it is noteworthy that the predictive
power that was achieved in this work is not its only quality.

One particular strength of this model is its privacy-
friendliness, as it uses only aggregated data instead of data
on individuals, thus avoiding a common pitfall of using
mobility-related data, and mobile network data in particular.
Most importantly, this work has shown that the uncongested
and saturation density regions of MFDs can be approximated
using signaling data. Thus, it is desirable to find out whether
highly congested networks exhibiting grid-lock phenomena
could be approximated similarly. They cover the full traffic
density range of a classical MFD as shown e.g. by Gerolim-
inis and Daganzo on the Yokohama network [10]. Currently,
transportation researchers are actively looking for novel ways
of obtaining MFDs, because they enable various planning
and control measures. In this vein, there are active initiatives
looking for novel data sources that show the emergence of
MFDs, e.g. the MFD Dataquest [17]. We believe that our
work is a first indicator that mobile network signaling data
are a potential candidate data source for MFDs, and this line
of research should be continued for other, more congested
networks to confirm or relativize our findings.
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