
Towards a Real-Time Driver Identification
Mechanism Based on Driving Sensing Data

Sasan Jafarnejad
Interdiscipl. Centre for Security,

Reliability & Trust (SnT),
Univ. of Luxembourg,

Esch-sur-Alzette, Luxembourg
Email: sasan.jafarnejad@uni.lu

German Castignani
Interdiscipl. Centre for Security,

Reliability & Trust (SnT),
Univ. of Luxembourg,

Esch-sur-Alzette, Luxembourg
Email: german.castignani@uni.lu

Thomas Engel
Interdiscipl. Centre for Security,

Reliability & Trust (SnT),
Univ. of Luxembourg,

Esch-sur-Alzette, Luxembourg
Email: thomas.engel@uni.lu

Abstract—The growing penetration of telematics systems and
connectivity in vehicles has enabled a large variety of possible
value-added services for drivers and service providers. In partic-
ular telematics based real-time driver identification is in interest
of entities such as insurance companies, car rentals and public
transportation fleet managers. We propose a mechanism for
driver identification based on driving dynamics signals currently
available in production cars. The system collects and filters
sensing data in a sliding window iteration, computes statistical
and spectral features and finally provides driver identification
for each window frame through a classification process. Finally,
a decision function takes individual predictions and outputs a
single prediction for the ongoing trip. We evaluate the impact
of various elements of the process on identification accuracy,
including sliding window size, classifier algorithms and feature
sets. Results show that complementing gas pedal signal with
steering wheel cepstral analysis improves identification accuracy
by 22.4%. We also show that Boosting classifiers provide better
predictions for our problem and the best results have been
achieved using AdaBoost with 95, 89, 82 percent accuracies for
5, 15, 35 drivers respectively. In terms of real-time identification
performance, the proposed system is able to correctly identify
75% of the drivers in less than 65 s in a 5 drivers scenario.

Index Terms—driver identification, driver modeling, machine
learning, driving behavior, real-time driver modeling.

I. INTRODUCTION

The growing penetration rate of telematics systems and
connectivity in vehicles has enabled a large variety of possible
value-added services for drivers and service providers. In
particular, being able to identify a driver in real-time based on
telematics data is of interest. More specifically, insurance and
car rental companies might be interested in fast detection of
stolen cars or undeclared secondary drivers (which commonly
are charged extra within the base pricing). Public fleet man-
agers might also be interested in verifying that the attribution
of drivers to different vehicles is respected as planned.

Very recently, research has been conducted by proposing
different feature sets to characterize and identify a driver.
In particular, those features are related to vehicle dynamics
parameters collected through a telematics system. Such a
telematics system data consists of vehicle parameters that
might be available through an On-Board Diagnostics (OBD)
connection that provides, for instance: speed, RPM, pedals
pressure, fuel efficiency, following distance, among others.

Moreover, for a driver identification mechanism, focus has to
be put on defining features that are based on data that the
driver can directly control so that the influence of the driving
context (i.e., road topology, weather, visibility) is minor. As
an example, some researchers [1] [2] have focused on the
spectral analysis of accelerator and brake pedal signals, which
has shown good identification performance for a limited set
of drivers.

In this paper, we propose to extend the methodology of
spectral analysis to other telematics signals and we propose
to validate the model using a large driving dataset called
UYANIK [3] consisting 105 people driving a single car along a
pre-defined route. In terms of the features used in the proposed
mechanism, we have exclusively focused on features that are
computed from sensors that are already available in market
vehicles in order to guarantee deployability. Since we want
this mechanism to provide driver identification in real-time, we
propose to run a classification algorithm in a time regular basis
and to apply a decision function to define the driver’s identity.
In this paper we present an evaluation of the performance of
the proposed mechanism in terms of accuracy of the decision
making and detection speed since the beginning of the trip.

The remainder of the paper is structured as follows. In
Section II we present the related work on driver identification.
Then in Section III, we introduce and characterize the dataset
used for the evaluation of the proposed mechanism. In Sec-
tion IV, we present the proposed feature set, the classification
algorithms and decision-making rules to identify drivers. Then,
in Section V we present evaluation results and corresponding
discussions. And finally we conclude and give directions for
future work in Section VI.

II. RELATED WORK

A number of studies on driver identification relevant to
our work have been proposed so far. In one of the ear-
liest works Wakita et al. propose to identify drivers using
behavioral signals captured during car-following task [4].
They compare identification performance of Gaussian Mixture
Model (GMM) against physical models. In terms of features,
they use following distance (FD), vehicle speed (VS), brake
and gas pedal pressures. They achieve an identification rate of

73% using GMM when considering thirty drivers. Miyajima
et al. [1] proposed a follow up on Wakita’s work using the
same dataset for evaluation. The key idea of this study is
the addition of features based on spectral analysis of gas and
brake pedals. The authors showed an identification rate of
76.8% using GMM for a field test with 276 drivers. This study
presents good results, but they were achieved using data from
sensors that is not available on commercial vehicles.

There are also a number of contributions in the literature
that make use of the same dataset that we use in this
paper (UYANIK). The first of them is by E. Özturk et al.
[5], which follows the same approach as the work presented
above. However the highest accuracy achieved is 57.39% for
23 drivers, which is far lower than the reported accuracy by
Miyajima et al. (76.8%). This large gap in accuracy maybe
explained by the low sampling rate of sensor signals in the
UYANIK dataset. Del Campo et al. [6] conduct a similar
study as Özturk et al., but using a methodology based on
multilayer perceptrons and focusing on real-time identification.
For a group of three drivers they achieve an accuracy of 84%.
In a follow-up work, Martı̀nez et al. [2] use extreme learning
machine as their classifier for driver identification. In compare
to other works mentioned above here features are extracted
from larger set of signals from CAN-Bus and IMU (Inertial
Measurement Unit). Then a feature selection stage selects the
more relevant features for identification. This results in 90%
accuracy for three drivers.

In a recent work, Enev et al. [7] present a comprehensive
work on driver fingerprinting. Although their focus is on the
security and privacy implications of driver identification, they
also achieve good identification results. For fifteen drivers they
achieved 100% accuracy. Since they extract statistical and
spectral features from 15 driving signals, their methodology
is computationally expensive. Other important findings of this
work is the very high importance of sensors such as brake
pedal and engine torque for driver identification.

TABLE I
SENSOR DATA AVAILABLE IN UYANIK

Channel Source Details

Video facing the driver Retrofitted 15 fps 480x640
Video facing the road Retrofitted 15 fps 480x640
Driver close-talking microphone Retrofitted 16 KHz 16-bit
Rear-view microphone Retrofitted 16 KHz 16-bit
Cellular phone microphone Retrofitted 16 KHz 16-bit
Steering wheel angle (SWA) CAN-Bus 32 Hz degrees
Steering wheel relative speed CAN-Bus 32 Hz degrees/second
Vehicle speed (VS) CAN-Bus 32 Hz km/h
Individual wheel speeds CAN-Bus 32 Hz km/h
Engine RPM (ERPM) CAN-Bus 32 Hz, rpm
Yaw rate (YR) CAN-Bus 32 Hz
Clutch state CAN-Bus 32 Hz, 0/1 state
Reverse gear CAN-Bus 32 Hz, 0/1 state
Brake state CAN-Bus 32 Hz, 0/1 state
Clutch CAN-Bus 32 Hz, 0/1 state
Brake pedal pressure sensor Retrofitted Kg-force per cm2

Gas pedal pressure sensor Retrofitted Kg-force per cm2

XYZ directional accelerations IMU 10 Hz
Laser rage-finder Retrofitted 1-2 Hz, 181°, cm

III. DATASET

We consider the UYANIK dataset, which has been col-
lected under the shared framework of Drive-Safe Consor-
tium (Turkey) and NEDO (Japan) International Collaborative
Research [3][8]. Its main application focus is driving behavior
signal processing, more specifically, applications ranging from
driver identification to driving environment personalization
and driver assistance among others. For UYANIK, a Renault
Megane was equipped with an adequate set of sensors to
collect driving data. These sensors include three microphones
to capture ambient sound in the cabin and cameras to capture
video facing both the driver and the road. There is a laser
range-finder placed in front of the vehicle to scan the distance
to obstacles. An IMU measures the car’s dynamics, and a
GPS receiver keeps track of vehicle’s location. Furthermore
pressure sensors are retrofitted under gas and brake pedals
to accurately record pedal actuations. Further, CAN-Bus data
are recorded as well, which contains data from several vehicle
sensors, ranging from engine speed to steering wheel angle.
The complete list of available sensor signals is presented in
Table I. Data collection is done in Turkey, and consists of a
25 km long path which includes a short ride inside university
campus, a city traffic driving, motorway traffic driving, a dense
city traffic driving and, finally, the way back to the point of
departure. A typical trip lasts about 45 minutes.

The UYANIK dataset is invaluable to researchers but it
has some shortcomings. For example, not all the recordings
include brake and gas pedal sensors and the ones that do are
frequently very noisy therefore unusable. In order to ensure
more realistic conditions, we discard data from external pres-
sure sensors (gas and brake pedals) as well as the laser range-
finder and the IMU. We have performed a pre-processing step
to ensure that driving sessions containing a high proportion
of corrupt data are discarded. Then in order to have more
balanced dataset, we discard recordings that are too short
or too long. Such anomalies caused either due to technical
difficulties or external factors such as severe traffic jams. Table
II shows a summary of dataset before and after pre-processing
and filtering.

IV. IDENTIFICATION MODEL

A. Methodology

The goal of driver identification is to associate a driving
trace x to its corresponding driver y. We limit the target
drivers to a finite set and approach driver identification as
a supervised classification problem. In this work we only
consider the case that we have information on all drivers, for
example when a car is shared among family members. Suppose

TABLE II
SUMMARY STATISTICS OF DATASET

Dataset Trip Length (Minutes) Participants
Min Max Avg (Std) Male Female Total

Entire dataset 20.30 83.90 42.75 (9.79) 81 12 93
Selected subset 34.37 52.52 42.56 (4.87) 59 8 67

Driving
Signals

Low Pass
Filter

Add 1st & 2nd

order derivatives

Windowing
Function

PGP
SWA

All Signals Extract Statistical
Features

Extract Cepstral
Features

Classifier
hw

Decision
Function

fMV or fMS

Output
ŷ

Fig. 1. Driver Identification Process

C = {d1, d2, · · · , dc} denote a finite set of drivers (e.g. family
members), then we assume any driving trace is done by a
driver in C (y ∈ C). We search for a function h which once
trained is able to predict the corresponding driver (ŷ) for any
unseen driving trace x, knowing that ŷ ∈ C. Since x is a
sequence, classical supervised machine learning (ML) methods
are not directly applicable, therefore we apply concept of
sliding windows to make this possible [9]. We use window
classifier hw to map each window frame of length w into indi-
vidual predictions. Let d = (w−1)/2 be the half-width length
of window, then for a window frame at time t, hw makes
prediction ŷt based on window 〈xt−d, · · · , xt, · · · , xt+d〉. Due
to high sampling rate of driving signals it is not feasible
to make predictions for every window frame. Therefore we
make window predictions for every k = bw ∗ (1 − r

100)c
samples, where k denote step size and r denote the percentage
of overlap between two consecutive windows. This results in
N = T

k examples. To put this into context, each driving trace
(x, y) is converted into window frames, then hw is trained
using feature vector x computed for each window and original
label y. Similarly to classify an unseen driving trace x, it is
converted into N window frames, for each window frame
feature vector xi is computed and hw makes prediction ŷi
based on xi. Finally ŷ results from concatenation of all ŷi.
We require to assign x to only one driver therefore we define
ŷ = f(ŷ) as decision function which maps individual window
predictions to one single prediction for the whole driving trace.

Multiclass Classification: Since driver identification is per-
formed among more than two drivers (generally a multiclass
problem) and many classification algorithms are inherently
binary, we choose the one-vs.-one (OvO) approach to convert
binary classifiers into multiclass classifiers.

Evaluation Method: In order to address applications with
different requirements we perform evaluations for three driver
set sizes of c ∈ {5, 15, 35}. Identification among drivers with
similar driving styles is more challenging therefore we repeat
for each c the evaluation M = 10 times and each time on
a random subset Cm of all drivers C, where Cm ⊂ C and
|Cm|= c. For each instance Cm in order to utilize the entire
driving traces Dm = {(xi, yi)}|Cm|

i=1 for both training and
testing, we employ a five fold cross-validation method. Each
driving trace (xi, yi) is sliced into 5 segments of equal length
and evaluations are performed under leave-one-segment-out
train and test scheme. Therefore at each fold one slice from all
driving traces is kept out of training process, then h is scored
based on its prediction performance over the remaining slice.
We use accuracy to score h at each fold, which is defined as

TABLE III
SELECTED SIGNALS FOR DRIVER IDENTIFICATION

Sensor Derivations Cepstral
1st 2nd

Percentage Gas Pedal (PGP) Yes Yes Yes
Steering Wheel Angle (SWA) Yes Yes Yes

Vehicle Speed (VS) Yes Yes No
Engine RPM (ERPM) Yes Yes No

Yaw Rate (YR) Yes Yes No

below:

α′ =
1

c

c∑
i=1

1(yi = ŷi) (1)

where 1 is the indicator function, ŷi and yi are respectively
prediction and true driver for ith driving trace.
The overall accuracy score for h is then obtained by calculat-
ing the mean accuracy of all cases as follows:

hscore =
1

M · L

M∑
m=1

L∑
l=1

α′m,l (2)

where L = 5 is number of cross-validation folds and M = 10
is number of repetitions. In the rest of paper we refer to this
score as accuracy.

B. Pre-processing and Feature Extraction

Two kinds of signals are used for feature extraction: 1)
Original signals 2) Derived signals. Original signals are the
original sensor values from CAN-Bus, while derived signals
are the first and second derivative of original signals. To
motivate this choice let us take vehicle speed as an example: its
first and second derivative represent longitudinal acceleration
and jerk, which have shown to be representative of particular
driving styles [10], therefore these signals are useful for
discriminating between drivers.
Figure 1 shows the various stages that the original signals go
through before the feature extraction step. In this study we use
five original signals which are listed in Table III. All these
signals are obtained from CAN-Bus. First a low-pass filter
(FIR) is applied to original signals to remove high frequency
noise and smoothen the signals. Then for each signal we use
the Savitzky-Golay [11] filter to derive their first and second
order derivatives and add two additional signals. Then, all the
signals go through a windowing function which takes two
parameters, w to determine the length of window and r to
specify amount of overlap between two consecutive windows.
At this point each signal is broken down into windows of size
w and is ready to supplied into feature extraction stage.

Two kinds of features are extracted from each window:
Statistical features: A set of descriptive statistics is

selected to be most representative of the distribution of sensor
values covered by the window. This set includes minimum,
maximum, mean, median, standard deviation, kurtosis, skew-
ness. This category of features is extracted from all the signals.

Spectral features: Studies have shown that cepstral anal-
ysis is suitable for driver identification [1] [5] [6]. Cepstral
analysis has various applications including in speech and
speaker recognition [12]. In our implementation we multiply
a Hamming window of length w to limit the signal and also
reduce the edge effects. We define c(k) to be the first k cep-
stral coefficients and higher order coefficients are discarded.
Equation to derive c(k) is:

c(k) =
∣∣F−1 {log(|F {xtwt}|)}

∣∣ (3)

Where xt denote signal values covered by current window,
wt denote Hamming window with the same length as window
and F and F−1 denote discrete Fourier transform (DFT) and
inverse-DFT (IDFT) respectively. We extract spectral features
from two signals, gas pedal position (PGP) and the steering
wheel angle (SWA) and keep the first k = 32 cepstral
coefficients as features.

C. Classification Algorithms

We select five classification algorithms to be used as window
classifier hw. We benchmark them and pick the best perform-
ing algorithm to conduct further experiments. In our selection
we favored ensemble methods because it has been shown that
they generally achieve better predictive performance [13]. The
following is the list of classification algorithms used in this
study along with their corresponding parameters.
• AdaBoost (AB) - 500 decision trees as weak learners,

learning rate = 0.75
• Gradient Boosting (GB) 500 estimators, maximum

depth = 6
• Random Forest (RF) 500 estimators, maximum depth =

6, minimum samples per leaf node = 2
• Extra Trees (ET) 500 estimators, maximum depth = 8,

minimum samples per leaf node = 2
• Support Vector Machine (SVM) linear kernel, C =

0.025
For ensemble learners in order to have a balance between
prediction performance and execution time we choose 500 as
number of weak learners/trees. In our experiments we use the
implementations from the scikit-learn software package, all
other parameters are set to their default values as of scikit-
learn version 0.18.1 [14].

D. Decision Functions

The decision function f determines the final prediction ŷ
based on window predictions ŷ. We define for each window
k a vector ŷk = (α1 · · · αc) where αk,j corresponds to the
classification score on the window k for driver j. Below we
introduce two decision functions to obtain ŷ and evaluate their
performance later in the paper:

1) Majority vote (MV): For each temporal window k, we
find the identifier of the driver with largest classification score
Ik = argmaxαi. Then We assign to each temporal window
a ranking score vector RSk =

(
βk
1 , · · · , βk

c

)
where βk

Ik
= 1

and all other βk
i = 0. Finally ŷ is the identifier of the driver

who most frequently obtains the highest classification score,
i.e., ŷ = argmaxi

∑
βk
i

2) Maximum score (MS): We set ŷ to be the identifier of
the driver that has the largest cumulative classification score,
i.e., ŷ = argmaxi

∑N
k=1 αi

To motivate the introduction of the two decision functions
let us take the following example which consists of classifica-
tion scores of three drivers for five windows:

(ŷk)
5
k=1 =

0.15 0.40 0.45
0.18 0.39 0.43
0.27 0.34 0.39
0.06 0.73 0.21
0.09 0.81 0.1

In MV we simply count how many times each driver has the
highest score and choose the most frequent as prediction:

ŷ = fMV((ŷk)
5
k=1) = argmaxi (0 2 3) = d3

MV is sensitive to miss-classifications at hw. Suppose d2 is the
true driver, for the first three windows d2 and d3 are scored
very closely but at window level choice is always with d3.
Looking at the next two windows and the whole picture d2 is
more likely to be the correct prediction. Next we compute the
prediction based on MS:

ŷ = fMS((ŷk)
5
k=1) = argmaxi (0.75 2.67 1.57) = d2

While MV falls short at this example MS handles such
instances more robustly.

0 5 10 15 20 25
Window Size Seconds

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n
A

cc
ur

ac
y

Overall
5 Drivers
15 Drivers

Fig. 2. Window Size Comparison

V. IDENTIFICATION PERFORMANCE

In this section we present results of our experiments and
their corresponding discussions. Each subsection is focused
on a certain component of the proposed method, therefore in
order to avoid repetition unless otherwise is stated experiments
are performed using configurations introduced in Section IV,
with AdaBoost as hw, MS as f , w = 12s and r = 20%.

5 15 35
Drivers

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
A

cc
ur

ac
y

PGP
SWA
PGP+SWA

(a) Feature Benchmark

5 15 35
Number of drivers

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A

cc
ur

ac
y

AdaBoost
Gradient Boosting
Random Forest
Extra Trees
SVM

(b) Classifier Benchmark
Fig. 3. Identification Performance

A. Optimum Window Size

Since feature vectors are computed on window frames, a
key parameter in our method is the choice of w and r (overlap
percentage). We perform experiments for window sizes1 from
2 to 50 seconds, with r fixed at 20%. According to results
shown in Fig. 2, as w increases accuracy also improves
until reaching its peak at 12 seconds then starts to decline.
Moreover, not only we observe a decline in accuracy, but
also that larger windows result in larger latencies (at this case
with fixed r). In practice a small window results in larger
number of training examples which leads to larger compu-
tational expenses for both training and prediction. Moreover
each window frame may not contain the entire duration of
driving events such as a turn and over-take. On the other
hand longer windows results in fewer examples therefore are
computationally cheaper. We do not investigate impact of
window overlap (r). However, larger overlaps increase the
number of window frames which potentially leads to better
identification performance, but greatly increases computations.

Enev et al. [7] perform a similar experiment but they
conclude that 3s results in the best performance, while by our
experiments 12s yields the best results. We hypothesize that
this large difference is caused by the chosen features; some
features are most informative when computed over longer
periods while others not, therefore it is expected that optimum
window size differs for various feature sets. The choice of
window size and overlap size is highly application dependent.
For example in case a fleet manager wants to validate the
actual driver for a long trip a fairly large window size and
small overlap would be sufficient. On the other hand if it
is desired to identify the driver as quickly as possible, for
example to customize the driving experience, then having a
large overlap and reasonably small window size is preferable.

B. Feature Comparison

Some works in the literature such as [1], [5], [6] show
that when cepstral analysis is applied to gas and brake pedal
pressure signals it improves driver identification accuracy.

1 Window sizes of length 2, 3, 5, 7, 10, 12, 15, 20, 30, 40, 50 Seconds

Such signals are obtained by fitting external sensors under the
pedals and are not available in production vehicles. Instead
we choose PGP and SWA that are available on unaltered
vehicles from CAN-Bus. We choose SWA because similar to
pedals steering wheel is also operated directly by driver and
its movements potentially reflects some unique characteristics
of driver.

In order to evaluate the impact of the SWA signal on
driver identification, we consider three cases. First we limit
the features only to spectral analysis of PGP, then only to
spectral analysis of SWA, and finally both signals. Results
are depicted in Fig. 3a, as one can see when each signal
is used alone, PGP yields better results than SWA (1.4 to
22.58% improvement), however when used together results
significantly improve (8.86 to 22.44%) from the best single
signal case, this is particularly noticeable when the number
of drivers increases. When some of the drivers operate the
gas pedal or the steering wheel similar to one another; the
use of PGP and SWA at the same time helps the classifier to
discriminate the drivers.

C. Classifier Benchmarks
Identification results for various classification algorithms are

depicted in Figure 3b. AdaBoost clearly provides the best
performance with 95%, 89% and 82% accuracy for groups
of 5, 15, 35 drivers respectively. Runner up classifier is
Gradient Boosting with 95%, 86%, 75% accuracy. The third
best performance is achieved using SVM with 90%, 81% and
68% accuracy for groups of 5, 15, 35 drivers. The results show
the dominance of Boosting algorithms and relatively weak
performance of Random Forest and Extra Trees (Bagging
algorithms). Nevertheless, SVM shows fairly good results
but noticeably lower than AdaBoost and Gradient Boosting.
Superior performance of Boosting learners and particularly
AdaBoost can be explained by their underlying mechanics,
which consists of combining a large number of weak learners
to make a prediction. During the training AdaBoost iteratively
identifies misclassified instances and tweaks subsequent learn-
ers to predict them correctly. Furthermore both Bagging and
Boosting algorithms we used here internally perform a feature

0 20 40 60 80
Time (Seconds)

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
re

di
ct

io
n

C
er

ta
in

ty

d0
(d1)
d2
d3
d4

(a) Case I - Target driver d1

0 20 40 60 80
Time (Seconds)

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
re

di
ct

io
n

C
er

ta
in

ty

d0
d1
(d2)
d3
d4

(b) Case II - Target driver d2

0 20 40 60 80
Time (Seconds)

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
re

di
ct

io
n

C
er

ta
in

ty

d0
d1
d2
(d3)
d4

(c) Case III - Target driver d3
Fig. 4. Prediction over time.

selection step which is not the case for SVM therefore it
suffers from sensitivity to training features. The the results
achieved using AdaBoost are better than earlier works in
the literature, except for [7] in which authors achieve 100%
accuracy for 15 drivers, however they use 15 signals from
CAN-Bus and perform spectral analysis on all signals, while
we only use 5 signals and apply spectral analysis on two of
them. It is worth mentioning that in this work we try to keep
the study realistic therefore we do not selectively filter out the
sections of trip that are not the most informative. For example
in [6] authors only use the reference-driving segment of the
trips, or in [1] they only consider the times that the car is on
the move. Such assumptions although suitable for preliminary
studies they do not reflect the real world conditions.

D. Decision Functions

The final stage of the proposed methodology is the decision
function f . To investigate performance of each decision func-
tion we perform several experiments using MV and MS and
compare the results, for these experiments we use AdaBoost,
as it was shown to yield the best identification performance.
First we consider the case that the entire test-data is used for
prediction. Results are summarized in Table IV. We can see
in average MS results in 2% to 7% higher accuracy.

In another experiment in order to evaluate how performance
changes with increase in amount of test-data. We keep the
amount of training data constant (45 of the entire trip, like
earlier experiments) but for test-data, instead of using the
remaining 1

5 , we only employ a fraction of test-data and
gradually increase the ratio1 and observe changes in accuracy.
Fig. 5a shows the corresponding results. We observe that MS
delivers better identification accuracy (up to 16%) for shorter
driving traces, as well as for larger number of drivers. This
gain in performance comes with a cost, since the implemen-
tation of MS assumes calibrated probability outputs [15] from
the classifier hw which may not be provided by the classifier
or require additional computational costs to be obtained. On
the contrary, MV only requires the prediction labels.

E. Real-time identification

We also investigate how the incremental addition of more
data samples impacts the prediction performance. Figure 4
shows three identification cases. In these plots the vertical

1 We start from 0.1 and increase at 0.1 steps until reach 1.0

TABLE IV
IDENTIFICATION ACCURACY - DECISION FUNCTIONS

Decision Function 5 Drivers 15 Drivers 35 Drivers
Avg (Std) Avg (Std) Avg (Std)

Majority Vote (MV) 0.95 (0.06) 0.87 (0.05) 0.75 (0.03)
Maximum Score (MS) 0.95 (0.07) 0.89 (0.04) 0.82 (0.02)

axis denotes normalized cumulative prediction score for each
driver and horizontal axis denote time in seconds. Better
prediction score means higher certainty for the corresponding
driver therefore as we advance in time and more examples
are available for prediction, we ideally expect higher certainty
for predicted driver. Case I shows that although for the first
10 s, expected prediction could be wrong (d2 instead of d1)
as more samples are collected, the prediction changes in favor
of the correct driver. Case II shows a challenging example,
as it fails to make the correct prediction before having close
to 50 s of driving data (to compute feature vectors from).
Case III makes correct prediction right from the beginning
and with high certainty. This shows that more data results
in gains in identification performance however, at this point
it is not clear if this is always the case. To investigate this
we refer to an experiment discussed earlier whose results are
depicted in Fig. 5a. We can clearly observe that in most cases
with increase in amount of test-data (longer driving records)
accuracy monotonically increases. For instance in case of 35
drivers, having 5 times more data (use of 50% of test-data
instead of 10% for identification) leads to 22% higher overall
accuracy (55% increase).

We define time to detection as the time it takes to correctly
identify a driver. We use this metric to evaluate in average
how much driving data would be needed to make a correct
identification. The results are presented in Fig. 5b in form of
cumulative probability density function (CDF). For 5 drivers,
among correctly identified cases (95%) we observe that 75%
of them are detected in less than 65. As the number of drivers
increase identification task becomes more difficult thus time to
detection increases thus for 15 and 35 drivers 75% of drivers
are detected in less than about 145s and 228s. These findings
are important because for certain applications such as theft
detection it is desired to as soon as possible be notified of the
incident. Or for a personalized adaptive cruise control (ACC)
a short time to detection is required so that before the car gets
to a highway, the true driver is already identified.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of testdata

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

A
cc

ur
ac

y

5 Drivers MS
5 Drivers MV
15 Drivers MS
15 Drivers MV
35 Drivers MS
35 Drivers MV

(a) Identification performance for variable amounts test-data

0 100 200 300 400 500
Time Seconds

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

5 Drivers
15 Drivers
35 Drivers

(b) CDF of time to detection
Fig. 5. Identification Performance

VI. CONCLUSION

In this paper, we have proposed a mechanism for
driver identification based on driving dynamics signals
currently available in market cars. In particular, we use
simple statistical features from the following 5 signals:
PGP, SWA, VS, ERPM, YR and more complex cepstral fea-
tures only from PGP and SWA. The proposed methodology,
collects and filters sensing data in a sliding window iteration,
computes statistical and cepstral features and finally provides
driver identification for each iteration through a classification
process. The driver identification for the on-going driving
session is provided through decision functions that take into
account the classification scores of previous iterations. We
proposed an evaluation study based on a large driving dataset.
The results show that adding SWA’s cepstral coefficients as
features increases identification performance by 22.4% in
average. We have shown that Boosting classifiers can provide
better predictions in our problem and the best results have
been achieved using AdaBoost with 95%, 89%, 82% accuracy
for 5, 15, 35 drivers respectively. Moreover, we proved by
experimentation that during driving sessions, our methodology
composed of classification on sliding windows and cumulative
decision functions incrementally improves the performance of
the driver identification without declining.

This architecture is practical if: a) enough data is already
collected, b) the model is pre-trained on a server. In future
work we try to address the above mentioned limitations.
To achieve this goal we need to: a) decrease the required
computational power and b) fit the model in real-time . To
address the first issue we see the need for in-depth feature
analysis and feature selection; reducing the dimensions could
greatly decrease the computational demand and may also lead
to improvements in accuracy. Finally, online or incremental
learning can be used in order to fit the model in real-time and
more importantly make it evolve as more data are collected.

ACKNOWLEDGMENT

The authors would like to thank Dr. Hüseyn Abut and
VPALAB of Sabanci University for providing the dataset.

REFERENCES

[1] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and
F. Itakura, “Driver modeling based on driving behavior and its evaluation
in driver identification,” Proceedings of the IEEE, vol. 95, no. 2, 2007.

[2] M. V. Martnez, I. D. Campo, J. Echanobe, and K. Basterretxea, “Driv-
ing Behavior Signals and Machine Learning: A Personalized Driver
Assistance System,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Sep. 2015, pp. 2933–2940.

[3] H. Abut, H. Erdoğan, A. Erçil, A. B. Çürüklü, H. C. Koman, F. Tas, A. Ö.
Argunşah, B. Akan, H. Karabalkan, E. Çökelek et al., “Data collection
with” uyanik”: too much pain; but gains are coming,” 2007.

[4] T. Wakita, K. Ozawa, C. Miyajima, K. Igarashi, K. Itou, K. Takeda, and
F. Itakura, “Driver identification using driving behavior signals,” IEICE
Transactions, vol. 89-D, no. 3, pp. 1188–1194, 2006.

[5] E. Öztürk and E. Erzin, Driver Status Identification from Driving
Behavior Signals. New York, NY: Springer NY, 2012, pp. 31–55.

[6] I. del Campo, R. Finker, M. V. Martı́nez, J. Echanobe, and F. Doctor, “A
real-time driver identification system based on artificial neural networks
and cepstral analysis,” in 2014 International Joint Conference on Neural
Networks, IJCNN 2014, Beijing, China, July, 2014. IEEE, 2014.

[7] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile Driver
Fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 1, Jan. 2016.

[8] C. Miyajima, T. Kusakawa, T. Nishino, N. Kitaoka, K. Itou, and
K. Takeda, “On-going data collection of driving behavior signals,” in In-
Vehicle Corpus and Signal Processing for Driver Behavior. Springer,
2009, pp. 45–54.

[9] T. G. Dietterich, “Machine learning for sequential data: A review,” in
Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR). Springer, 2002, pp. 15–30.

[10] F. Sagberg, Selpi, G. F. Bianchi Piccinini, and J. Engström, “A review
of research on driving styles and road safety,” Human factors, vol. 57,
no. 7, pp. 1248–1275, 2015.

[11] M. J. E. Savitzky, A. Golay, “Smoothing and differentiation of data by
simplified least squares procedures,” Anal. Chem., vol. 36, 1964.

[12] A. M. Noll, “Cepstrum pitch determination,” The journal of the acous-
tical society of America, vol. 41, no. 2, pp. 293–309, 1967.

[13] D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical
Study,” Journal of Artificial Intelligent Research, vol. 11, 1999.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[15] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities
with supervised learning,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 625–632.

