
4550 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 6, JUNE 2017

Recent Trends in Driver Safety Monitoring Systems:
State of the Art and Challenges

Arief Koesdwiady, Student Member, IEEE, Ridha Soua, Fakhreddine Karray, Senior Member, IEEE,
and Mohamed S. Kamel, Life Fellow, IEEE

Abstract—Driving in busy highways and roads is becoming com-
plex and challenging, as more cars are hitting the roads. Safe
driving requires attentive drivers, quality perception of the en-
vironment, awareness of the situation, and critical decision mak-
ing to react properly in emergency situations. This paper provides
an overview on driver safety monitoring systems. We study var-
ious driver sources of inattention while providing a comprehen-
sive taxonomy. Then, different safety systems that tackle driver
inattention are reported. Furthermore, we present the new gen-
eration of driver monitoring systems within the context of Inter-
net of Cars. Thus, we introduce the concept of integrated safety,
where smart cars collect information from the driver, the car,
the road, and, most importantly, the surrounding cars to build
an efficient environment for the driver. We conclude by high-
lighting issues and emerging trends envisioned by the research
community.

Index Terms—Driver distraction, driver fatigue, driver states
monitoring systems, integrated safety.

I. INTRODUCTION

THE smart cities concept is becoming more and more of a
reality, thanks to the spectacular integration of long-term

evolution (LTE) networks (4G and 5G), wireless sensor net-
works, Clouds computing, Internet of things (IoT), and vehicu-
lar ad hoc networks (VANETs). One of the major objectives of
smart cities is to improve quality of life by developing the “smart
mobility” concept. VANETs are quickly becoming a cornerstone
for enabling safety applications related to drivers, passengers,
pedestrians, and traffic in the smart city. Indeed, these ad hoc net-
works, established over radio-equipped vehicles, are expected
to contribute to road safety by providing pertinent information
to drivers on potential dangers within their surroundings. This
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information can be related to any of the following: distracted
driver, inattentive pedestrians, hazardous road conditions,
animals, to name a few. As such, if a threat can be detected
at an early stage, then appropriate maneuver(s) can be taken in
a timely manner.

Nevertheless, more than half of the world’s population now
live in urban areas according to recent statistics of the United Na-
tions. This increased urbanization results in continued growth
in motorization, and, as such, cities suffer from acute traffic
congestion and a dramatic increase in road casualties. Alarm-
ing statistics from the Association for Safe International Road
Travel indicate that nearly 1.3 million people die in road crashes
every year, with on average 3287 deaths a day [1]. At this rate, by
2030, road accident casualties will be the fifth leading cause of
death. Moreover, more than 90% of road accidents are caused
by human error. Indeed, a driver’s behaviors can be affected
by fatigue or drowsiness or by visual, cognitive, auditory, and
manual distractions. Over the past decade, there has been signif-
icant research effort dedicated to the development of intelligent
driver monitoring/assistance systems that enhance driver safety
by monitoring the driver and on-road surroundings. Neverthe-
less, the in-vehicle environment is challenging, as there is a
wide range of potential distractions to which drivers are ex-
posed. These sources encompass secondary tasks (not related
to the driving task) such as using a smartphone, navigation sys-
tems, and interacting with passengers or external distractions
(i.e., crossing pedestrians, road construction, etc.). Whether fa-
tigue or distraction, these factors leverage the driver driving
capacity and affect his situation awareness. The purpose of the
driver monitoring systems is to monitor the attention status of
the driver and to take the countermeasure required to main-
tain driver safety. Despite that many automakers have already
installed these systems in their connected cars, there is still a
crucial need to develop more reliable and fast responding mon-
itoring systems. Therefore, a distinction between the different
types of distraction and fatigue is fundamental in order to de-
velop an in-vehicle technology adapted to the detrimental effects
induced by each source of drowsiness or distraction.

The remainder of this paper is organized as follows. We pro-
vide in Section II an overview on advanced assistance driving
systems (ADAS). In Section III, we discuss the different sources
of driver distraction since distracted/impaired driving is the main
cause of road casualties. A comprehensive taxonomy of the dif-
ferent proposed frameworks, that tackle each kind of driver inat-
tention, is also provided. The discussion on the new paradigm of
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Fig. 1. Active and passive ADAS.

Internet of Cars and the concept of integrated safety as the new
generation of driver states monitoring systems are provided in
Section IV. Section V discusses future research directions and
challenges of driver states monitoring systems.

II. ADVANCED DRIVING ASSISTANCE SYSTEMS (ADASS):
AN OVERVIEW

ADASs are designed to automate or adapt the car’s electronic,
mechatronic, and communication systems for safer travel jour-
ney. The purpose is to alert drivers to potential threats or mitigate
collisions and help control the vehicle. ADASs are influencing
the driving experience in more and more vehicles. Hence, devel-
oping reliable and cost-effective ADASs is a challenging task
for cars designers. In this section, we provide a big picture on
ADASs based on their ability to take a preemptive role in miti-
gating hazardous situations (active systems and passive systems)
and system complexity (assisted, semiautomated, automated),
as shown in Fig. 1.

A. Active ADASs

This type of ADAS acts preemptively to avoid an accident
by taking control of the car [2]. It provides a response action
before the crash to avoid an imminent accident or reduce its
effects on the driver and the passengers. We can enumerate
three subcategories.

1) Informative systems: The main objective of these systems
is to provide drivers with additional information in a non-
intrusive manner.

2) Accident prevention: These systems advise the driver
to take corrective actions within a certain time margin
(4–10 s). Typically, sensors (i.e., cameras, radar, laser,
and ultrasonic) monitor the environment (i.e., road, sur-
rounding vehicles, and pedestrians) and warn the driver
of any accident hazards before intervening to mitigate the
crash.

3) Precrash: These systems intervene in a crash-imminent
situation. The duration of the precrash phase is computed
from the early detection of the accident to the occurrence
of the actual crash. The technologies used here aim at
reducing crash energy.

B. Passive ADAS Systems

These systems refer to the safety-embedded technologies in
the car that mainly target occupant protection and injuries re-
duction during a crash. These passive systems play a crucial
role when the active safety measures fail in preventing an immi-

nent accident. The first hour after the crash is called the golden
hour where the mortality incidence is very high (about 75%
of all deaths) [3]. This death rate can be substantially reduced
through an efficient intervention of passive safety systems in
both in-crash and postcrash stages. This is described next:

1) In-crash: The in-crash phase begins at the contact with
the colliding object and ends when the vehicle is at rest at
the crash scene.

2) Postcrash: The postcrash phase occurs immediately after
impact. The role of an ADAS in this phase is to provide
most appropriate emergency care and facilitate the rescue
of the involved victims.

Fig. 2 illustrates ADAS classification based on the response
time action and the degree of automation. This classification is
based on the study carried out by Eskandarian [2].

In the remainder of this paper, we focus on driver state mon-
itoring systems, as they constitute a major category of active of
ADAS.

III. DRIVER STATUS MONITORING SYSTEMS: OVERVIEW

AND TAXONOMY

As discussed in the previous section, ADASs promise to en-
hance vehicle safety by assisting the driver in complex traffic
situations by avoiding taking the wrong decisions and especially
reducing sources of driver distraction and inattention. Driver dis-
traction causes are diverse and increase subsequently the risk
during driving. Direct attention is crucial not only to perceive
cues but to take the appropriate decisions in the high dynamic
driving environment.

A. Driver Inattention; Definition and Frameworks

Driver inattention can be defined as “insufficient, or no at-
tention, to activities critical for safe driving” [4] and can be
classified into several subcategories, as reported in [4].

1) Driver restricted attention (DRA)—This inattention is at-
tributed to insufficient or lack of attention due to the bi-
ological factors, e.g., fatigue. These factors prevent the
driver from performing safe driving activities.

2) Driver misprioritized attention—This inattention is
caused by the driver inability to efficiently distribute atten-
tion to several driving activities. This type of inattention
is commonly experienced by young novice drivers.

3) Driver neglected attention—The absence of attention to
critical driving activities caused by the driver’s attention
neglect of activities that are critical for safe driving.

4) Driver cursory attention—The inattention occurs because
the driver is providing cursory attention to activities criti-
cal for safe driving.

5) Driver diverted attention—The deviation of attention from
the main critical driving activities due to a competing ac-
tivity. This kind of inattention is commonly called “driver
distraction.”

In [5], another set of definitions of driver inattention are
provided.

1) Secondary task distraction—Driver activities that distract
driver’s focus from the primary driving activities due to
activities not related to driving.
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Fig. 2. Taxonomy of ADAS.

Fig. 3. Taxonomy of driver inattention sources.

2) Driving-related inattention—Driver activities that distract
driver’s focus from the primary driving activities due to
driving-related activities.

3) Drowsiness—Driver biological behavior that prevents
driver from performing critical activities for safe driving,
e.g., eye closures, repeated yawning, and other behavior
that are categorized as drowsiness.

4) Nonspecific eye glance away from the forward roadway
[5].

Based on the definitions provided in [4] and [5], we conclude
that there are similarities between the two set of definitions:
DDA-NDR is similar to secondary task distraction, while DRA
is similar to drowsiness. Furthermore, the term driver distraction
will be used to replace DDA-NDR and secondary task distrac-
tion, while the term driver fatigue will be used to replace DRA
and drowsiness. A taxonomy of driver inattention sources are
depicted in Fig. 3.

B. Driver Distraction: Definition and Frameworks

Several definitions for driver distraction, considered as a spe-
cific form of inattention, have been established in the literature.
The most accepted definition of driver distraction is “a diversion
of attention away from activities critical for safe driving toward a
competing activity” [6]. The term “competing activity” is related
to interactions between the driver and passengers, thoughts, in-
vehicle technology, food, and noncritical driving activities [7].
Although distraction may take various forms, most of them can
be grouped into four categories [8].

1) Visual distraction—distraction that demands the driver to
switch the view away from the roadway, e.g., looking at a
traffic sign.

2) Auditory distraction—distraction that demands the
driver’s auditory focus, e.g., responding to conversation
with other passengers.
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3) Biomechanical distraction—distraction that requires the
driver to take the hands away from the steering wheel,
e.g., using cellphone.

4) Cognitive distraction—distraction that requires cognitive
workload other than the primary driving task, e.g., day-
dreaming.

In addition, in terms of complexity, distraction may also be
partitioned into three levels [5]: simple, moderate, and complex.
However, crash risk due to distracted driving is affected not only
by the types of distraction or the complexity levels but also by
the frequency and duration of the distracting actions [9]. In other
words, frequent simple distractions may have similar effect as
complex distractions. Subsequently, certain distraction activi-
ties can be categorized into two or more distraction types. For
example, text messaging can be considered as visual, manual,
and cognitive distraction since the activity involves the driver’s
vision, hands, and mind.

Most of the existing systems that detect driver distraction
are built based on three measures: driving behavior, driver’s
physiological state, and hybrid. We present in the next section a
literature review for driver distraction detection systems.

1) Driving Behavior Measures: Although the signals of
driving performance measures are readily available, they have
been rarely used in research literature. Most of the work on
driver distraction detection has involved combinations of driv-
ing behavior and driver’s physiological measures to have better
detection accuracy. In the following, we summarize main body
of work on driver distraction detection based solely on driving
behavior measures.

1) Vehicle dynamics: The use of in-vehicle information sys-
tems and partially autonomous driving assistance systems
may cause distracted driving. Fabio et al. [10] introduce
a nonintrusive visual distraction detection system based
on vehicle dynamics data. The authors classify distracted
driving using machine learning techniques, namely arti-
ficial neural network (ANN) and support vector machine
(SVM). The results show that the accuracy of the clas-
sifiers is not satisfactory. According to the authors, this
is due to the use of an intersubject analysis, while the
distraction response is highly subjective. The extension
presented in [11] uses an intrasubject analysis on a nonin-
trusive and real-time visual distraction classification based
on vehicle dynamics data. Subsequently, the accuracy of
the extended method is significantly higher than that of
the previous work.

2) Long-range temporal context of driving: A novel tech-
nique is developed in [12] to complement the existing
lane-keeping assistance systems for vehicles. The long-
range temporal context of driving and head tracking data
are modeled using long short-term memory (LSTM) re-
current neural networks, which enables a reliable subject
independent driving inattention detection. It is claimed
in [12] that the proposed LSTM framework outperforms
standard classification approaches such as SVM.

2) Driver’s Physiological Measures: Cognitively demand-
ing tasks affect driver’s behavior, such as eye glance pattern,
forward view angle, head movement, and other physiological
measures. To recognize these physiological measures effec-

Fig. 4. Context-aware driver status assessment systems [18].

tively, a video camera is used to capture driver behavior. In
the following, we present several studies on vision-based driver
distraction detection systems.

1) Head movement: The development of distracted driv-
ing detection systems based on Microsoft Kinect motion
sensing hardware is proposed in [13]. The Kinect is uti-
lized to track head and skeletal movement so that the
driver’s gesture can be identified. The tracking algorithm
is based on the relative distances between spatial locations
of the skeletal joins, and the rotation of the head.

2) Eye status detection: In [14], a vision-based driver mon-
itoring system is introduced. The system uses an eye-
detection algorithm, which is a combination of adaptive
boosting, adaptive template matching, and blob detection.
To increase the detection accuracy, a validation is applied
using SVM. Another vision-based distraction detection
system is developed in [15]. This work proposes the devel-
opment of a real-time eye status detection system, which
uses optimal Haar-training parameters to create a nested
cascade of classifiers.

3) Mouth movement: A study conducted in [16] employs
driver’s eye and mouth movement data, which are col-
lected using FaceLab Seeing Machine cameras, to detect
cognitive distraction. The results show that combining
driver’s eyes and mouth movements enhances detection
of cognitive distraction.

4) Facial expression and arm position: In this approach, sev-
eral cues related to fatigued and distracted driving are
observed, i.e., arm position, eye closure, eye gaze, facial
expressions, and orientation. Ragab et al. [17] gather data
using the system designed by authors of [18]. In this sys-
tem, Kinect and infrared cameras are attached to a car
simulator. The different submodules for assessing driver
inattention are depicted in Fig. 4.
Ragab et al. compare the performance of several classi-
fiers, i.e., random forest, AdaBoost, hidden Markov mod-
els, SVM, conditional random field, and neural network,
for distracted driving detection.

3) Hybrid Measures: Intuitively, hybrid measures, i.e., the
combination of driving behavior and driver’s physiological mea-
sures, may enhance the quality of the driving distraction de-
tection. Hirayama et al. [19] introduce a cognitive distraction
detection system based on eye gaze and peripheral vehicle be-
havior. It is concluded that the driver’s state affected the temporal
relationship between the driver’s gaze and the peripheral vehi-
cle behavior. The system employs a Bayesian framework for
the detection, which produces higher accuracy than road center
method does. In more recent work, the integration of dynamic
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TABLE I
COMPARISON OF DISTRACTION DETECTION APPROACHES

Driver Distraction Dataset Pros Cons

[10] simulation - nonintrusive - delay of distraction detection
- multimodal information - lack of generalization due to the limited datasets

[11] simulation - model personalization - delay of distraction detection
- nonintrusive - lack of generalization due to the limited datasets
- multimodal information

[12] real-world - high-accuracy results - noncomplex driving distraction detection
- nonintrusive - lack of generalization due to the limited datasets
- multi-modal information

[13] simulation - capability to detect specific driving distractions - limited behavioral scenarios
- nonintrusive - lack of generalization due to the limited datasets
- multimodal information

[14] real-world - nonintrusive - lack of generalization due to the limited dataset
- multimodal information

[15] simulation - large datasets - unimodal information
[16] simulation - multimodal information - lack of generalization due to the limited datasets
[17], [18] simulation - capability to detect specific driving distractions - lack of generalization due to the limited datasets

- nonintrusive
- multimodal information

[19] real-world - multimodal information - lack of generalization due to the limited datasets
- intrusive

[20] simulation - multimodal information - lack of generalization due to the limited datasets
- nonintrusive
- efficient computation

[21] simulation - multimodal information - lack of generalization due to the limited datasets
capability to detect specific driving distractions - partially intrusive

Bayesian network (DBN) and supervised clustering to detect
cognitive distraction based on eye movement and driving per-
formance, i.e., steering wheel and lane positions, is proposed in
[20]. The data used to train the algorithms are obtained from a
simulator, where the driver performed driving actions with and
without auditory distraction. The algorithms are compared to the
previously developed DBN and SVM algorithms. Although the
results show that the proposed algorithms achieve comparable
performance to the previous work, the training and prediction
time are improved drastically. Recently, Craye et al. [21] pro-
posed a holistic approach for fatigue and distraction detection.
Captured features are grouped into three modules: vision, au-
dio, and other signals (steering wheel, pedal position, and heart
rate) modules. Each module operates independently and can be
enabled or disabled. Then, each module provides its own esti-
mation of driver fatigue/distraction. The final estimation is done
by the fusion of each estimation provided by each module using
Bayesian networks.

To highlight the performances and capabilities of the listed
approaches, we present a qualitative comparison; the quantita-
tive one, in terms of accuracy, reliability, and other quantitative
measures, is not suitable since each approach uses different
datasets and experimental settings.

Table I summarizes the qualitative performances and capa-
bilities of approaches proposed by some researchers in terms of
pros and cons. As can be seen from the table, the majority of
the approaches use simulation datasets. These datasets refer to
datasets that are generated from driving simulation scenarios,
while real-world datasets refer to datasets that are generated
from real driving environment, i.e., real cars and real traffics.
Almost all of the approaches are lack of generalization due to
the limited number of participants in the data collection pro-
cesses. Driver distraction detection systems are highly subject

dependent. Furthermore, a large number of participants are re-
quired to achieve sufficient generalization.

C. Driver Fatigue: Definition and Frameworks

Another subset of driver inattention is driver fatigue. It is de-
fined in [22] as the result of symptoms (impaired performance)
and their factors (long awake period). In [23], fatigue is catego-
rized into four groups: local physical, general physical, central
nervous, and mental fatigue.

The central nervous fatigue is an important type of fatigue
which is connected to “the level of brain stimulation and the
structures that regulate it” [23]. In terms of sleepiness level, the
“central nervous” fatigue is categorized into four levels: com-
pletely awake, moderate sleepiness, severe sleepiness, and sleep.
These levels of sleepiness are a combination of the amount of ac-
tivity and the brain’s waking capacity [23], which are affected by
several factors. These factors will modify the sleepiness thresh-
old. To detect whether a driver is fatigued or not, the following
symptoms have to be recognized [24]: repeated yawning; confu-
sion and thinking seems foggy; feeling depressed and irritable;
slower reaction and responses; daydreaming; difficulty keeping
eyes open; lazy steering; difficulty maintaining concentration;
swaying of head or body from nodding off; vehicle wandering
from the road or into another lane; and nodding off at the wheel.

There are three main approaches to recognize fatigue symp-
toms: driving behavior, driver’s physiological, and hybrid
measures. The following subsection summarizes works that
have developed in fatigued driving detection system.

1) Driving Behavior Measures: Studies carried out include
the assessment of 1) steering wheel motion, 2) vehicle state
information, 3) road departure detection, and 4) other acces-
sible sensors. This section presents an overview of related
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work on fatigued driving detection based on driving behavior
measures.

1) Steering motion: The estimation of fatigued driving based
on steering motion is presented in [25]. The chaos detec-
tion in the motion of the steering wheel is based on chaos
theory. The data from the steering wheel are preprocessed
by fast Fourier transform and wavelet transform. The fa-
tigued driving is then determined based on the attractor
trajectory. In [26], a fatigued driving monitoring system
based on a pattern of slow drifting and fast corrective
counter steering is proposed. The extracted features are
learned using some machine learning methods, such as
SVM, K-nearest neighbor, etc. Then, the classification
results are combined using an ensemble learning tech-
nique to predict accurate driver’s states. Another work
employing steering wheel data to detect fatigued driving
is proposed in [27]. In this work, data are collected from a
driving simulator that are driven by 12 participants. Then,
data are classified into drowsy and nondrowsy driving
using ANN.

2) Road departure: In [28], an intervention system and a road
departure warning is investigated. To develop the fatigue
recognition model, the authors proposed a system identi-
fication technique using lateral position as the input and
steering wheel as the output. The simulation results show
that the adopted model has acceptable accurate identifica-
tion.

3) Vehicle state: A study of fatigued driving detection based
on the vehicle state information is investigated in [29].
The vehicle states such as steering angle and trace pro-
file are analyzed using the localized energy method. The
experiment shows that the driver’s states have effect to
the vehicle behavior, which can be used to determine the
fatigued driving state.

4) Collision avoidance system (CAS) sensors: A driver inat-
tention monitoring system using CAS sensors are devel-
oped by Torkkola et al. [30]. The data obtained from the
sensors are then classified using machine learning tech-
niques. This system is able to produce high classification
accuracy without adding cost of additional sensors.

2) Driver’s Physiological Measures: Fatigue can be effec-
tively measured by humans physiological condition. We high-
light the following physiological measures.

1) Eye and face movement: Lee and Chung [31] develop
an Android-based system that combines eye movement
and biosignal data to monitor driver drowsiness. Another
smartphone-based driver fatigue detection technique is de-
veloped in [32]. In this work, both the driver’s eye and face
are tracked. A novel fatigued driving monitoring system
based on the multivariate hierarchical Bayesian network is
proposed in [33] to alleviate the high error rates of image-
based fatigue monitoring systems. The proposed system
consists of four modules: face region detection, eyelid
closure judging, head positioning, and fatigue analyz-
ing. In [34], the authors resort to an infrared camera-
based driver fatigue surveillance system. The goal of us-
ing the infrared camera is to extract more easily human’s
pupil images. These images are then classified using a

backpropagation neural network. Khan and Mansoor [35]
design a cross-correlation function-based classifier to
classify eyelid movement. When the eye closure is de-
tected for more than a specified threshold time, an alert
signal is then generated.

2) Speech: A study by Li et al. [36] proposes a speech-
based fatigued driving monitoring system. The detection
algorithm is built using nonlinear speech processing tech-
niques combined with fuzzy SVM. In addition to the clas-
sical SVM method, a fuzzy clustering method is used to
compensate the noise and outliers. The experimental re-
sults have shown the feasibility and effectiveness of the
proposed method to recognize fatigue.

3) PERcent of Eye CLOSure (PERCLOS): PERCLOS is a
video-image-based method to track eye closure. It is cal-
culated as the total time that the driver’s eyelids are closed
80% or more [37]. In [38], PERCLOS is used as the input
of the AdaBoost classifier. The results showed that the
method is able to identify the state of the eye under nat-
ural lighting conditions. An eye detection method based
on active appearance model (AAM) is introduced in [39].
The AAM model is used to detect the position of the
head and the location of the eyes. Then, the PERCLOS
of the detected eyes is measured to justify whether the
driver is drowsy or not. Since PERCLOS has its limita-
tions, an infrared video-based fatigued driving detection
system is developed in [40]. The system merged the char-
acteristics from eyes and mouth to improve the detection
accuracy.

4) Pressure sensors: Another method to detect fatigued driv-
ing is based on pressure sensors [41]. The variation in
steering grip force can be used to observe driver’s state,
e.g., fatigue and loosing alertness. The force data are ob-
tained using two resistive force sensors positioned on the
steering wheel. The log-likelihood ratio is used to deter-
mine the alertness of the driver. In [42], a multisensory
platform for the driver inattention detection system is in-
troduced. The authors implement a multiview classifica-
tion method based on particle swarm optimization to fuse
pressure sensors and video camera.

5) Skin: In [43], the authors propose an approach to detect
fatigued driving based on photoplethysmograpy signals.
These signals generate the pulse rate variability signal,
which can be used to measure the autonomous nervous
system activity. The authors of [44] match the perfor-
mance of the response during monotonous tasks with skin
potential activity to identify the drowsy driving.

6) Biological signals: These signals are mainly:
a) the electrical activity along the scalp (EEG);
b) the electrical activity of the heart (ECG);
c) electrical activity associated with eye movements

(EOG);
d) the electrical activity produced by skeletal muscles

(EMG).
Jung et al. [45] use a new ECG sensor to detect driver’s
health condition. The sensor is embedded on the steering
wheel and is used to measure the driver’s heart rate through
the driver’s palm (see Fig. 5). Data from sensors are then
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Fig. 5. ECG sensors embedded on a steering wheel to detect driver’s health [45].

used to determine driver’s condition such as normal and
fatigue.
A real-time driving fatigue identification based on EEG,
EMG, and EOG is designed by Zhang et al. [46].
The measurements from sensors are used to determine
fatigue based on various entropy and complexity mea-
sures. Some entropies (wavelet entropy, sample entropy,
and peak-to-peak value of ApEn) are used to recognize
driver states (normal, mild fatigue, mood swing, and ex-
cessive fatigue states). Besides, a system that combines
EEG and visual activity to detect fatigued driving is de-
signed in [47]. Diagnostic techniques and fuzzy logic are
used to detect drowsiness based on the EEG brain activity
and EOG blinking data. The results of both data classifi-
cation are then combined using cascading decision rules
to determine the scale of drowsiness. Heart rate variability
(HRV) is one of the physiological measure that can be used
to detect fatigued driving. However, the accuracy of the
detection using HRV as a stationary signal is questionable.
Therefore, Li and Chung [48] resort to wavelet transform
of HRV data. This transformation provides richer data and
ensures accurate classification of drowsy driving.

3) Hybrid Measures: Combining driving behavior and
driver’s physiological measures ensure increasing of the de-
tection confidence, which results in more reliable systems. The
fusion of driver physiological and driving performance mea-
sures is introduced in [49]. The data generated from several
sensors are fused using an ANN and a stochastic optimization
method. To validate the results, the ground truth is generated
based on a supervised Karolinska sleepiness scale. Another fa-
tigued driving monitoring system based on hybrid measures is
developed in [50]. The system uses depth camera, pulse rate,
and steering angle sensors to detect whether the driver is in fa-
tigue driving condition or not. The data obtained from the sensor
then are fused and classified using multilayer ANN. The system
has successfully classified three levels of drowsiness with high
accuracy. Al-Sultan et al. [51] introduce a driver state detec-
tion system based on a context-aware system in VANET. The
context-aware architecture consisted of five layers, which have
the ability to collect contextual information about the driving
environment, to reason about certain and uncertain contextual
information and to react to the available flow of information.

The inference mechanism is performed in real time by a set of
DBNs.

Similar to the comparison of driving distractions detection
systems, fatigue detections approaches are compared based on
the cons and pros provided by the listed approaches. Table II
shows a summary of the qualitative performances and capabili-
ties of approaches proposed by some researchers.

IV. DRIVER MONITORING SYSTEMS IN INTERNET OF CARS:
RECENT TRENDS

Frameworks mentioned in previous sections focus only on the
driver behavior and its interactions with in-car sensors. This lim-
ited observation through driver’s car cannot handle efficiently
road crashes in a smart city. The driver is an integrated part of
a chain that is larger than its vehicle. This chain includes hu-
mans, vehicles, and environment (roads, infrastructure, traffic
signals, mobile Internet, and Clouds). This global framework
represents the Internet of Cars, and it provides drivers not only
with in-car reasoning and decision capabilities but with exter-
nal environment capabilities as well. In the next section, we
give an overview Internet of Cars and highlight its abilities in
providing vehicles with a deep understanding of the dynamic
entities within their environments, hence impacting drivers ac-
tions. Integrated safety, the new wave of driver states monitoring
systems shaped by Internet of Cars, is also highlighted.

A. Internet of Cars: An Overview

Conventional VANETs consider each participating car (itself
comprising a large number of sensors) as a wireless mobile
node that can connect one another hence, creating a wide range
network. Recent technological advances have brought car de-
signers to low-cost and high-performance sensors such as radar
(forward looking obstacle detection), on-board camera (pedes-
trian detection, lane keeping, driver monitoring), infrared (night
vision), ultrasonic (automated parking), and light detection and
ranging (LiDAR) sensors. These sensors continuously capture
information from the car, the driver, and the road. This informa-
tion is then fed to the driver, to the embedded systems within the
car, the highway infrastructure, and to the cloud. Thus, the car
becomes a smart “thing” that can talk to other cars, people, and
roads through the Internet and other communications protocols.
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TABLE II
COMPARISON OF FATIGUE DETECTION APPROACHES

Driver Fatigue Dataset Pros Cons

[25], [28], [29] simulation - nonintrusive - unimodal information
- lack of generalization due to the limited datasets

[30] simulation - nonintrusive - lack of generalization due to the limited datasets
- multimodal information

[31] real-world - multimodal information - lack of generalization due to the limited datasets
- intrusive

[36] simulation - large datasets - unimodal information
[38] simulation - multimodal information - lack of generalization due to the limited datasets

- intrusive
[42] simulation - capability to detect specific both driving distractions and fatigue - lack of generalization due to the limited datasets

- nonintrusive - nonspecific fatigue detection
- multimodal information

[43] simulation - nonintrusive - lack of generalization due to the limited datasets
- nonrealistic driving environment
- unimodal information

[45] real-world - nonintrusive - lack of generalization due to the limited datasets
- unimodal information

[50] simulation - multimodal information - lack of generalization due to the limited datasets
- nonintrusive
- multilevel drowsiness detection

Fig. 6. Internet of Cars: Different layers.

As such, connected cars are evolving toward connected things
that can discover themselves autonomously and connect and in-
teract with surrounding cars to ensure safer driving. Hence, the
IoT is paving the way for the evolution of VANETs into the
Internet of Cars. Smart cars will constitute a key component of
connected “things.” Hence, cars are evolving from mobile nodes
that can disseminate information to intelligent agents with pow-
erful sensing, reasoning, and decision capabilities [52].

The Internet of Cars system is a three-level “client–
connection–cloud” system [53], as depicted in Fig. 6.

1) The client system: It is the set of sensors inside the in-
telligent car. Those sensors gather data and detect driv-
ing conditions and the environment. It also features the
different intravehicle, intervehicle, and vehicle-network
communication.

2) Connection system: This layer deals with the different
kinds of wireless communications (V2V, V2R, V2H, V2I,

Fig. 7. Illustrative scenario of Integrated Safety in Internet of Cars.

etc.) in order to ensure connectivity and the roaming of
existing networks (VANETs, UMTS, LTE, Zigbee, etc.).

3) Vehicular Cloud system: The cloud offers network ac-
cess to mobile cars. It was first introduced by Gerla [54].
The cloud is constructed by collaborations among cloud
vehicles and road side units (RSUs) hence enabling the
fusion and sharing of databases. Recently, Bosch has de-
veloped a new cloud-based driver warning system that
alerts drivers within seconds if they are going in the wrong
direction [55]. If the actual vehicle and lane direction do
not match, the system issues immediately an alert for the
current vehicle and oncoming vehicles traveling in the
opposite direction.

Thus, Internet of Cars generates new opportunities for safe
driving and provides an excellent platform for assisted driving
systems. Let us consider the scenario depicted in Fig. 7. The
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Fig. 8. Cooperative and predictive driver assistance: progression improvements [56].

driver in the gray car is momentarily distracted. Sensors in the
street have detected an icy road condition, and this information
is forwarded to the road infrastructure. The latter transmits it
to the Cloud. Then, data are processed and pooled with actions
of nearby cars (e.g., red car), location, and drivers states (dis-
tracted, impaired, and attentive). Analytics models can rapidly
discern if a hazardous pending event is about to occur in this
portion of the network. Consequently, the Cloud layer advise
on the need for emergency services and the need for local au-
thorities to deal with the icy road conditions. Immediately after,
it alerts the driver of an imminent danger and recommends
on possible actions to follow. In the case the driver does not
respond in time, this alert triggers driver states monitoring sys-
tems safety measures in the gray car such as automatic braking or
deceleration.

This illustrative scenario describes how driver states monitor-
ing systems can be more efficient by being a component of the
Internet of Cars. This integration should reduce road casualties
caused by driver distraction. A new trend of these systems sees
the distracted driver as an entity in a fleet of connected cars
that is continuously interacting with its surroundings. This new
trend termed as integrated safety, on which we focus in the next
section.

B. Integrated Safety: The New Trend of Driver
Monitoring Systems

It is worth noting that active and passive safety may reduce
significantly the frequency of accidents and injury severity, but it
is may not be sufficient. Fusion of pertinent information from the
environment of the car helps to assess the current situation and
identify the presence of a threat. The authors in [57] demonstrate
that focusing only on cognition and behavior of the driver is not
sufficient. It is crucial to account for behavior and traffic beyond
the driver’s vehicle.

The progression of safety systems improvements is depicted
in Fig. 8. The lowest level of safety includes in-vehicle sensors
that cooperate for enhanced performance. Second level inte-
grates communications among vehicles using V2V. This is the
cooperation safety across cars. The third level adds the coop-
eration between vehicles and infrastructure using V2I. Conse-
quently, by integrated safety, we consider all possible coopera-
tion between vehicles, traffic systems, infrastructure, and Cloud
to mitigate accidents and maintain a full awareness of dangerous
situations [2], [56]. This can be achieved by the following.

1) Driver centric techniques: ADAS ensures situational
awareness and include the driver in the decision process.

2) Vehicle centric techniques: use of more sensors embedded
in the vehicle to provide decision support.

3) Network centric techniques: use of plethora of wire-
less communications (V2X) to share pertinent in-
formation about the route, weather, and surrounding
drivers.

The research community has shown great interest lately in
integrated safety. Salvucci focuses on car interactions in [57].
They exploit computational cognitive models to predict and de-
tect complex interactions between several cars, while one or
more of the drivers are performing distracted driving. The re-
sults show that distracted driving can produce significant effects
on other drivers. Hence, the driving distraction can be detected
using drivers interactions. From the fact that distracted driver
may have contribution to the average behavior of the population
of cars, Ersal et al. [58] use a radial-basis neural network to
model this aspect. In [59], the authors propose a cooperative
ADAS (CoDAS) that tackles blind spot occurrence. Current
blind spot assistance systems suffer from limited perception
range in the scenario of fast passing cars. The main two compo-
nents of CoDAS are the application unit (AU) and the car com-
munication unit (CCU). The CCU sends and receives V2X mes-
sages from AU through its 802.11p radio interface as depicted
in Fig. 9.
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Fig. 9. CoDAS system architecture [59].

Fig. 10. Cooperative driving software framework residing on each vehi-
cle [60].

In [60], the critical decision making process is shared between
controlled close formations of cars, called a “platoon,” via V2X
communications. Their proposed framework (see Fig. 10) en-
sures platooning path planning and collision avoidance. The
middle layer is a four-task strategy for path planning, which
requires exchange of assumed trajectories via V2V communi-
cations between neighbors cars. Messages contain information
on position, velocity, and acceleration profiles of cooperative
vehicles for the next 5 s.

In [61], the authors propose a holistic attention assist frame-
work (AFF) that encompasses the main aspects of integrated

Fig. 11. Block diagram of AAF [61].

safety and models them using the high-level information fusion
techniques. Since a smart city provides a myriad of information
sources, the AFF takes advantage of this rich set of informa-
tion to provide a more accurate traffic situation assessment. A
block diagram of the proposed framework is depicted in Fig. 11.
Three basic modules, namely I/O module (IOM), traffic assess-
ment module, and communication module cooperate tightly to
execute the whole process.

V. DISCUSSION AND FUTURE DIRECTIONS

In this section, we highlight some specific research directions
that appear promising or are likely to be challenging in the
coming years.

A. Autonomous Driving

Since the vast majority of accidents are caused by human
errors (distracted and impaired driving), automakers want to
transfer as much as possible the risk from the driver to the ma-
chine. A self-driving car can be defined as a car, which can
achieve perception of its driving environment, make decisions
about its path to reach destination, and, finally, drive toward
the destination without substantial intervention of human. The
driver inattention detection technologies could bridge an impor-
tant gap in the realization of autonomous or self-driving cars.
When the attention of human drivers is established, cars can be
made autonomous on relatively safe road, and whenever more
precise handling is required, driving control can be returned to
humans. In a different scenario, when a driver inattention is de-
tected, cars will run autonomously and avoid roads that require
precise handling.

1) Autonomous Cars Today: Google was self-driving pio-
neers [62]. Its self-driving car has driven over 435 000 miles
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on California roads in April 2013. Mercedes-Benz developed
an autonomous car, called the S 500 Intelligent Drive research
vehicle in August 2013. The self-driving car succeeded to drive
for 100 km in dense traffic and complex traffic situation [63].
Volvo Tech is working on a project that aims at making trucks
smarter and able to completely take over the driving task [64].
The project is based on a predictive 360◦ view of things that
allows the truck to make decisions based on what it thinks about
its surroundings.

A recent collaboration between the U.S. space agency and
Nissan targets the development of a fleet of autonomous cars
that can drive without human intervention in real driving con-
ditions [65]. Besides, BMW unveiled a car that can, via an
application installed on a smart watch, find a parking garage
and a spot without any human support [66].

The first test of self-driving car in open public road was held
in Parma, Italy, in July 2013 [67]. The test included round-
abouts, pedestrian crossings traffic light, junctions, and road
priority. Nevertheless, some problems still unsolved such as
large roundabouts and bad weather conditions.

2) Challenges for Driver Assistance Systems: It is not cer-
tain how self-driving technology will shape safety systems em-
bedded in the car. Based on currently available data, we are
confident that it will have a drastic impact on future ADAS
systems. We nevertheless highlight the following challenges.

1) Need for sophisticated environment model: While it is ob-
vious for humans to navigate in urban streets, it may not
be a straightforward task for future autonomous cars. Nav-
igating safely requires sophisticated models of the envi-
ronment around self-driving cars, recognition techniques
of other surrounding vehicles and obstacles, and best prac-
tices to navigate without breaking any traffic rules.

2) Adaptation and improvement of road infrastructures: Self-
driving cars need maps drastically different from what we
use today to navigate. Maps in future should be updated
every second about road conditions, obstacles, lane clo-
sures, accidents, and traffic streams. Maps makers should
use data provided by RSUs and data in the cloud to feed
maps in real time. This is becoming a reality for a number
of luxury cars, which are connected with the Internet.

3) Specific human–machine interaction (HMI) requirements:
By hitting roads in few decades, autonomous cars will
define new HMI concepts and mental models. Users in
robotcars understand differently the autonomous cars di-
rections and warning. Therefore, the new concepts and
models should take into account this huge diversity. In
addition, the role of the driver, the driver–car interaction,
and driver involvement should also be investigated.

B. From ITSs to Data-Driven ITSs: How Big Data Is
Revolutionizing Driving Monitoring Systems

The volume of data that is generated by drivers, cars, road
infrastructures, or on-board sensing units is overwhelming. In
fact, transportation networks offer a variety of infrastructural in-
formation ranging from weather, construction areas to dynamic
roadway condition. Moreover, cars can receive and transmit
near-range information using V2V and V2I communications

such as obstacles behind curves and slow-driving vehicles. Local
information are also gathered by on-board sensing units such as
video cameras, LIDAR, and radar units (obstacles ahead and
lane deviation). According to recent studies [68], 26 millions of
connected cars have generated more than 480 TB of data. This
number keeps rising as more information and data are generated
around connected cars. In the other hand, self-driving cars will
use a huge number of sensors to gather real-time information
about the car, the driver, and its changing surroundings. Those
sensors will work tightly with a constellation of other technolo-
gies such as LTE, 5G, clouds, and electric grids [69]. Hence,
managing petabytes of information is now the new norm, and
data are at the core of traffic and safety authorities decisions.

1) Big Data Collection and Predictive Analysis: The amount
of structured and unstructured data created by connected cars,
as well as the plethora of its sources and complexities, repre-
sents the main issues for the introduction of big data paradigm
in ADAS systems [69]. With connected cars, data collection
technologies are moving from traditional means such as loop
detector or video detections to in-car telematics, technologies
that leverage connectivity whether over the Internet or via ded-
icated short -range communication devices. Connectivity will
not only boost existing in-car technologies such as event data
recorders or on-board diagnostic standards, but connectivity will
shape drastically the data collection technologies outside the
car [70]. This ocean of data can only be beneficial and generate
significant traffic safety advices if multiple sources of data are
paired and data are mined and assessed correctly. This raises the
question: how to interpret this huge volume of data and how to
inform drivers in case of critical situations?

Analyzing the data will capture real-time data insights from
inside and outside the cars and ensure revealing meaningful
driving patterns or connections between driving behavior and
specific driving situations. That is the role of predictive analyt-
ics. This latter will enable fleet managers to use data to switch
from a historical descriptive view to a forward-looking perspec-
tive of what is ahead [71].

2) Improving Driver Safety Through Big Data: We think that
Big data will bring new revolutionary ways to learn how drivers
actually behave to mitigate accidents and assist drivers during
their journeys. To name a few:

1) Connected driver assistance: Big data analytics can pro-
vide high-level insight into driver personality by captur-
ing, his way of moving, his way of switching lanes, how
hard drivers push brake systems, at what speed, and the
conditions under which they are applied. Recently, INRIX
has developed the INRIX Road safety technology that
gives drivers advance warning of dangerous road weather
conditions ahead, keeping them safer on their route [72].

2) Predictive health and diagnostic check: Driven by predic-
tive analytics, predictive maintenance software can detect
anomalies and failure patterns in car’s functioning mode.
This early revelation of potential threats ensures the de-
ployment of limited resources for maintenance, the ex-
tension of equipment uptime, and ultimately improving
driver satisfaction [73].

3) Smart mobility: By tracking driver behavior data and
mixing against traffic data, weather conditions and
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social networks information (concert, closed road, etc.)
can also help drivers to make more smarter driving de-
cisions. The analysis of this mixture of pertinent data
can provide drivers unique insights regarding the types of
roads in his trip and traffic conditions [74], [75].

4) Cost-effective autoinsurance: Traditional rating factors
used by cars insures, such as age, gender, marital status,
driving violations, credit score, and previous claims expe-
rience, are not enough efficient. To measure the true level
of driver risk, they need to track the risk level of drivers’
daily commutes and their daily actions on the road. These
data combined with other information (weather, traffic
volume, road conditions, etc.) are used to rate the driv-
ing skills and hence attribute a more accurate score to the
driver. Based on these scores, cars insures will determine
the insurance charge for each driver.

Big data is the fuel of connected vehicles. Combining the
connected car, the data it generates, and big data analytics would
fundamentally shift the way of making decision from a reactive
mode to proactive intelligence in decision making.

C. Security and Privacy Issues in Internet of Cars

The privacy implications of connected cars come from the
underlying technologies used in Internet of Cars. Telematics
and other connected car services are delivered using a combi-
nation of technologies including on-board vehicle sensors, GPS
satellite communications, V2V and V2I communications, cloud
computing, and data analytics. These technologies will gather,
analyze, and make use of high volumes of data from a variety
of sources. Hence, the wireless transmission of data as well as
its passage through the cloud makes it readily and constantly
available to the automaker.

Moreover, despite its benefits mentioned in the previous para-
graph, big data raise big concerns about the amassing of huge in-
formation and their use to identify individuals from supposedly
anonymous datasets and to glean intelligence about drivers and
passengers [76]. Subsequently, connected cars present unique
privacy issues not only because the environment in which cars
evolve, but also because of the additional data that connected
cars generate. Some of the highly sensitive information are bio-
metric and health data, location data, personal communications
(voice, email, social networking), personal contacts, and sched-
ules. We will highlight hereafter the main factors that create
issues for privacy and security.

1) Massive and cumulative data combined with the power
of data analytics: The use of cumulative and combined
vehicle’s data could have devastating consequences on
personal data. Before the emergence of big data and cloud,
the knowledge of a given piece of personal data (driving
routes, in-vehicle communications, etc.) reveals limited
information about the driver.

2) Risks of overcollection: Drivers cannot hamper the au-
tomakers to harvest and store their personal data in the
cloud or data center unnecessarily. This situation increases
dramatically the risks of vulnerability to security breaches,
malicious access and use, state surveillance, and any other
suspicious use from third parties. Only the relevant infor-
mation for a specific purpose should be collected.

3) Risks of in-vehicle system maintenance: A connected car
will need to download updates similar to smartphones or
computers. Typically, the car will establish a connection
to a cloud-based system to get updates in order to avoid
repairs on the road. Hence, the security of a car and its
data connections are no longer limited to the in-vehicle
environment.

VI. CONCLUSION

Driver errors still remain the main cause of casualties in the
roads. Texting at the wheel, talking in the cell phone, checking
maps, and drowsiness are different types of activities that take
the driver away from his primary task of driving and decreases
drastically his attention. Thus, it is fundamental to investigate
driver inattention behavior behind the wheel. This was the pur-
pose of the first section of our paper. Indeed, we provided a
comprehensive classification of different types of inattention.
For each type, we gave a complete state of the art of frame-
works that mitigate driver inattention.

On the other hand, the paradigm of Internet of Cars is fast
becoming a reality. Main goal still remains driving without fa-
talities. In Internet of Cars, vehicles will talk (communicate) to
drivers, road users, traffic signs, roads, and Cloud. Therefore,
a special attention was given to integrated safety, since it inte-
grates driving states monitoring systems with a constellation of
other technologies (LTE, 4G, V2V, V2I, etc.). Integrated safety
ensures more accurate perception of the driver behind the wheel.

Finally, the last part provided insights on main challenges still
encountered along with future directions of research in the area
of driver state monitoring systems. These issues should be tack-
led and solutions should be found to ensure minimum injuries
and fatalities on our roads. One of the most important trends is
self-driving cars where the driver concept will vanish progres-
sively to give birth to computer on wheels. Thus, governments
and research institutions along with car manufacturers are re-
quested to plan at all levels for making self-driving a reality on
our roads.
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