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Abstract—Although many target applications in VANETs are
information-centric, the performance of Named Data Networking
(NDN) in vehicular ad-hoc networks is severely hampered
by persistent network partitioning, typical of many vehicular
scenarios. Existing approaches try to address this issue by
relying on opportunistic communications. However, they leave
open the crucial issue of how to guarantee content persistence
and tight QoS levels while optimizing the resource utilization in
the vehicular environment. In this work we propose DeepNDN,
a communication scheme based on the joint application of
NDN and of probabilistic spatial content caching, which enables
content retrieval in fragmented and dynamic network topologies
with tight delay constraints. We present a data-based approach
to DeepNDN management, based on locally modulating content
replication and delivery in order to achieve a target hit ratio in a
resource-efficient manner. Our management algorithm employs a
Convolutional Neural Network (CNN) architecture for effectively
capturing the complex relations between spatio-temporal patterns
of mobility and content requests and DeepNDN performance. Its
numerical assessment in realistic, measurement-based scenarios
suggest that our management approach achieves its target set
goals while outperforming a set of reference schemes.

I. INTRODUCTION

Vehicle-to-vehicle (V2V) communications are a key enabler
of Intelligent Transportation Systems (ITSs) as well as of
autonomous coordinated driving, enabling secure and efficient
mobility services as well as a wealth of safety and entertainment
applications. However the performance of these services, when
relying on host-based communication models such as IP and on
point-to-point information exchanges, is significantly affected
by high mobility and dynamic network topologies, leading to
unstable inter-vehicular connectivity, to packet loss and low
service availability [1].

Among the candidate approaches to address these issues, of
particular interest is Named Data Networking (NDN) [2], a
communication paradigm based on in-network caching, and on
information retrieval according to content name rather than host
location. NDN takes advantage of content redundancy in the
network to minimize the number of transmissions required to
deliver a given content, potentially improving the effectiveness
of content retrieval on the occurrence of network topology
changes [3].

However, significant challenges stand in the way of an
efficient and effective applicability of NDN in the vehicular
domain [1]. Specifically, the fragmented structure of vehicular

network topologies, typical of a large number of urban and
extra-urban settings, limits the scope of NDN to single
connected components. In addition, NDN fails to maintain
stable paths between requesters and content sources in highly
dynamic topologies and variable network densities [4]–[6].

For highly sparse and dynamic settings, in which store-
carry-and-forward is the main mode of communication, a
large number of Delay-Tolerant Networking (DTN) schemes
for content distribution is available (e.g. [7] and reference
therein). Among these, of special relevance are probabilistic
spatial content caching schemes based on opportunistic content
replication, such as Hovering Information [8], Anchored
Information [9], and Floating Content (FC) [10]. Their goal
is to achieve probabilistic content persistence and a target hit
ratio within a predefined geographical area, while minimizing
the amount of system resources employed [11]. However, being
designed for sparse topologies, they are highly inefficient in
contexts where node clusters are a significant portion of the
network, and they do not support content retrieval with tight
delay constraints.

A promising approach to address both the aforementioned
shortcomings of NDN and the limitations of DTN schemes in
vehicular settings is to combine NDN for intra-cluster content
exchanges with Delay-Tolerant Routing (DTR) schemes for
inter-cluster content dissemination [12]–[14]. However, several
of these works apply to settings where networks have relatively
stable topologies and mobility patterns, and they are thus unfit
for vehicular networks. Moreover, they all leave open the
crucial issue of how to orchestrate communications in order
to deliver a given target performance (e.g. in terms of hit ratio
and maximum delay) in a fragmented and dynamic network,
in a resource-efficient manner.

The present work represents a first attempt at tackling these
issues. We consider scenarios in which infrastructure support
to V2V communications (in the form of collection of data
on user mobility, and orchestration of content replication) is
ubiquitous. The main contributions of this paper are:

• We propose DeepNDN, a communication scheme for content
retrieval in vehicular networks, based on the joint application
of NDN and of probabilistic spatial content caching, and
capable of adapting to a wide range of network topologies
and to very dynamic settings.



• We present a data-based approach for dynamic management
of DeepNDN, which achieves a target minimum hit ratio
in a resource-efficient manner, by proactively adapting the
content replication and availability to local conditions. The
approach employs a Convolutional Neural Network (CNN)
architecture, in order to effectively capture the complex
relations between spatio-temporal patterns of mobility and
the performance of the content delivery service. A flexible
cost function allows accounting for heterogeneity in the node
population (e.g., in spatio-temporal patterns and resource
availability) and for a variety of resource cost models.

• We assess numerically our approach on a set of realistic
scenarios, showing that it substantially outperforms schemes
based only on NDN, both in terms of resource efficiency
and in the ability to satisfy tight QoS constraints.

The paper is structured as follows. Section II presents the sys-
tem model, followed by the problem formulation in Section III.
Our deep learning management algorithm is illustrated in
Section IV and assessed numerically in Section V. In Section VI
we review the state of the art. Finally, Section VII concludes
the paper.

II. SYSTEM MODEL

We consider a set of nodes (modeling vehicles and pedes-
trians) moving on a road grid. We assume that each node
knows its position and embeds a wireless network interface
(such as IEEE802.11p, IEEE802.11bd, Bluetooth, or cellular
D2D [15]) to communicate directly with other nodes in its
vicinity. We say that two nodes are in contact when they are in
range to exchange directly information. In addition, each node
is endowed with a cellular network interface. Coherently with
the 5G (and beyond) paradigm, we assume that a coordination
and management function (e.g., possibly implemented by a
Software Defined Network controller - SDNC [16]) within the
cellular access network periodically collects data about node
mobility in order to optimize operations.

We assume that the road grid is partitioned into I road
segments, generally of different size and shape (as shown in
Figure 1b). The number and shape of each segment are based
on the tradeoff between computational complexity and accuracy
of our approach. Given a specific content, we consider a time
interval T , denoted as observation interval, corresponding
to the time period during which a population of users might
request that content. With respect to a given content, we assume
that each node is either neutral, when it does not possess the
content nor it has requested it; requester, when it has requested
the content but it does not possess it yet; or producer, when
it possesses the content. A requester becomes a producer if it
received the content by a maximum delay d, which is generally
different for each content type. Its duration is a function of the
specific application, beyond which the information requested is
useless. Indeed, we assume that if the requester for a content
does not get it by d seconds, it becomes neutral again.

All nodes entering the considered road grid are without any
content. Every time a node enters a segment i, it becomes a
requester with probability µi. This allows modeling a process
of content requests which is driven by context. Indeed, the

Table I
MAIN NOTATION USED IN THE PAPER

Name Description
I Total number of road segments in the grid
T Observation interval
µi Prob. for a node to become a requester in segment i
d Maximum delay for a request to be satisfied
bi Replication probability in segment i
ki Caching probability in segment i
ai Mean content availability in segment i
Ni Mean number of vehicles in segment i
h Max number of hops to forward an Interest Message
γi Total number of content transfers in segment i
r Mean hit ratio

need for specific information (e.g., about a point of interest)
is more likely to arise when people get close to it.

A. DeepNDN operation

In what follows, we describe the proposed DeepNDN
communication paradigm, based on combining NDN routing
mechanisms with strategies for probabilistic localized content
caching. At the beginning of the observation interval, a non-
empty subset of nodes in the scenario are producers (they
might have produced the content themselves, or downloaded
from the infrastructure), while the others are all neutral. We
assume contents are identified unambiguously by their names.

When a node becomes a requester for a given content, if it is
in contact with other nodes, it broadcasts an Interest Message
(IM) for that content. Then every Tf seconds, if it has not
received yet the content, it broadcasts again the IM to all
nodes in its range. A node receiving the IM checks whether it
possesses the content. If this is not the case, it records in the
Pending Interest Table (PIT) the node from which it received
the IM, and it rebroadcasts the IM. When the node from which
it received the IM is not anymore in range, the corresponding
entry in the PIT table is removed. When the IM reaches the
producer for that content, the producer replies by sending back
the requested content in a Data Message (DM), which is routed
back to the requester by exploiting the information stored in
the PIT of the nodes traversed by the IM. In order to limit the
overhead and prevent broadcast storms, we assume that the IM
cannot be forwarded to more than h-hops from the requester
which originated it. We assume each IM is valid until d seconds
have passed from the time at which the originating node became
a requester. After d seconds, the IM is not forwarded anymore,
and at each node, all the PIT entries corresponding to that IM
are removed. In this work, our primary focus is on the content
distribution. To reduce the effect of constant IM broadcasts, we
limit the IM travel to h hops. This allows broadcasting to be
limited only in particular clusters (areas) instead of occupying
the whole network. Moreover, FC works in the premise of
opportunistic communications, something that we suggest of
doing via broadcasting of IMs.

In what follows, we assume that the content can be
exchanged as the payload of a single layer 2 packet (i.e.,
as a single Data Message). When this is not the case, the
content is exchanged as a sequence of data messages, each



(a) (b) (c)

Figure 1. DeepNDN Overview. a) Road grid and node states. b) Road grid partitioning, data collection and dissemination. c) Content retrieval.

retrieved and routed independently through the network. For
ease of exposition, we assume that the Data Message can fit
into a single frame. But when this is not the case, our approach
allows the retrieval of several content objects related to the
same Data message. When a producer, residing in the ith road
segment, comes in contact with a neutral node residing in the
jth road segment, the content is replicated to the neutral node
with probability bi. When a node in the ith segment receives a
content, it checks the PIT, and it forwards the content to the
correspondent entries (as shown in Figure 1c). Then it keeps it
with probability ki. If the PIT is empty, and the node decides
to keep the content, for each node with which it is in contact
it replicates the content with probability bi (independently
for each node). Note that we assume content exchanges are
always unicast (one-to-one). However, the proposed scheme
can be easily extended to include the effects of multicasting
and broadcasting.

Let b = {bi} ∈ Rn, and k = {ki} ∈ Rn. The set of
parameters (b,k) completely describes a DeepNDN scheme for
a given content, as each entry identifies the content replication
and caching strategies over all segments during the whole
observation interval. Parameters (b,k) determine the likelihood
for the given content to persist probabilistically in the road
grid for the whole duration of the observation interval.

A key performance metric for the DeepNDN scheme is the
hit ratio, which is the fraction of requesters that get the content
within the maximum delay.

III. PROBLEM FORMULATION

Besides system parameters, the performance of the Deep-
NDN communication scheme critically depends on the values
of the replication and caching probabilities associated with
each road segment. Such a scheme requires a coordination
and management function which, given a minimum hit ratio
r and a maximum delay for a content, modulates (b,k) over
space satisfying the given performance constraints and content
persistence over the observation interval.

In this section, we perform a first step towards the design
of such a management function. We formulate the problem of

deriving the parameters (b,k) that achieve a target minimum
hit ratio r0 during the observation interval T while minimizing
a cost function accounting for the amount of host resources
(bandwidth and storage) employed by the scheme.

The cost function we adopt is the sum of two components.
The first is a user device storage function S(b,k), and it
accounts for the amount of storage at the user device employed
by the scheme. Its expression is given by the sum, over all
segments, of the mean number of producers in each segment,
averaged over the observation interval, and multiplied by the
content size L.

S(b,k) = L

I∑
i=1

Niai(b,k) (1)

where Ni is the mean amount of nodes on the ith segment,
while ai is the availability of the given content in that segment,
and it is equal to the fraction of nodes in that segment which
possess the content.

The second component is the user communication resources
function Γ:

Γ(b,k) =

I∑
i=1

γi(b,k) (2)

where γi is the total number of content transfers in road segment
i which have taken place during the observation interval T (a
content transfer is counted as taking place in the segment of
the transmitter node).

In the present work, we assume the content size to be
typically several orders of magnitude larger than the size of
control messages, as cellular network offloading is one of the
main applications of the proposed scheme. The resulting cost
function does not account for the amount of resource cost due
to the exchange of IM, nor to the exchange of information
implemented through the infrastructure (e.g., through the
cellular network), for the collection of data on mobility, and for
communicating the caching and replication parameters to each
node at the beginning of the observation interval. However,
our cost function (and our approach) can be easily generalized
to account for such contributions.



Given the high volatility and dynamism of the settings to
which DeepNDN applies, there is always a nonzero probability
that the content disappears from the road grid before the end of
the observation interval. This is undesirable in our scheme, as
it would entail the use of communication and storage resources
of the infrastructure (i.e., the cellular network) for reseeding
the content and delivering it, and this would defeat the purpose
of having DeepNDN in the first place. Let P (T ) denote the
probability of content disappearance during an observation
interval of T . Moreover, let r denote the mean hit ratio across
the whole road grid, averaged over the observation interval.
An optimal DeepNDN scheme is the solution of the following
optimization problem:

Problem 1.
min
b,k

Γ(b,k) + βS(b,k) (3)

Subject to:
r ≥ r0 (4)
P (T ) ≤ ε (5)

ε is the target maximum value of the probability of content
disappearance, while coefficient β modulates the relative weight
of the two cost components. By varying β it is possible to adapt
the cost function to settings with different resource availability
and to different incentive schemes to resource sharing and
cooperation.

Note that the optimal strategy is derived by solving Problem 1
separately for each different content, as each comes with its
own performance constraints (i.e., target hit ratio, maximum
delay, and observation interval). However, our approach can
be easily extended to a formulation that optimizes the overall
cost for several contents.

Problem 1 involves performance parameters (such as mean
content availability and the probability of content disappear-
ance) whose dependence on system parameters and input
constraints is complex to model analytically in a heterogeneous
setting, without relying on strong assumptions that limit the
accuracy of the resulting model.

To address this issue, in the next section, we present a data-
based approach to the optimization problem, relying on the
application of a CNN architecture.

IV. A DEEP LEARNING ALGORITHM FOR
RESOURCE-EFFICIENT MANAGEMENT

In this section, we describe our approach to solving Prob-
lem 1, based on a type of CNN which is adapted to model data
with grid-like topology [17]. The choice of a deep learning
approach is due to the high complexity of the relationships
between the system parameters, the caching and replication
strategies, and the performance of our NDN scheme in non-
homogeneous settings. In addition, a data-based approach
is made possible by a large amount of data (on its own
operation and on user patterns of demand, of mobility) which
is collected by the cellular infrastructure in the 5G paradigm
and beyond. The specific choice of a CNN architecture is due
to its ability to capture the complex relations between elements

of a multidimensional set of system parameters. In particular,
when applied to realistic, measurement-based scenarios, CNN
has shown a higher accuracy and efficiency in capturing the
correlations of spatial correlations (in our case, between spatial
features of the road grid) than other learning approaches, such
as Decision Tree or Random Forest [18].

We assume that the management function in the cellular
infrastructure, on the basis of data collected on node mobility
and on patterns of the content request, elaborates forecasts on
the spatio-temporal patterns of the process of requests for each
content, as well as on host resource availability, and mobility
patterns. In this way, it identifies opportunities for resource
optimization via content pre-fetching and caching at the user.

Then, possibly according to considerations of minimization
of resource utilization for the cellular network, and of avail-
ability of resources (the specific criteria used is however out
of the scope of the present work), it decides to offload pre-
fetching and delivery of a set of contents to the DeepNDN
communication scheme. The accuracy of such forecasts is out
of the scope of this work. However, our solution accounts for
data quality injected providing a conservative solution.

The setup and operation of our DeepNDN communication
scheme is divided into three phases:
• Data collection and elaboration. The management function

collects and records node mobility traces over time across
the whole road grid, on a regular basis. The training set is
generated, by associating the communication features to the
measured mobility features. Finally, the CNN is trained.

• Computation of a DeepNDN strategy. When a decision of
offloading the delivery of a content to the DeepNDN com-
munication scheme is taken, the management function in the
cellular infrastructure (e.g., an SDN controller) determines
the target hit ratio, maximum delay, and operational interval,
based on the application QoS requirements. Then it uses the
trained CNN to compute in real-time a set of parameters
(b,k) that allows satisfying the target minimum hit ratio
r0 and the constraint (5) on content absorption probability
while minimizing the cost function.

• Deployment. The system provides to all nodes in the
considered road grid, and to all those which enter the road
grid during the observation interval, the parameters (b,k)
which orchestrate the DeepNDN scheme for the given content.
If mobility and/or request patterns deviate significantly from
the forecasted ones during operations, new forecasts are
elaborated, and a new set of coefficients are computed and
adopted by all nodes in the road grid.

In what follows, we describe in detail the three phases, and
the algorithms involved.

A. Data collection and elaboration

The system collects, on a regular basis, data about vehicle
mobility in the road grid, recording the trajectories of each
user, and the time and location in which it becomes a requester.
Specifically, we assume that the system partitions time into
intervals. Then starting from user trajectories, for each segment
i and interval z, the system computes a set of aggregate metrics



Table II
FEATURES COLLECTED IN EACH SEGMENT.

Array Notation Feature

Mobility m

average number of nodes
average node speed [m/s]
average number of nodes in contact
mean request arrival rate [s−1]

Communications c

average number of requesters
average number of producers
average number of transmitting nodes
mean hit ratio [s−1]
mean request delay [s]

relative to node mobility and to wireless communications. With
mz , we denote the mobility array for the zth time interval,
consisting of the values of these aggregate parameters for the
whole grid. For each segment, the mobility array contains
the average node speed, the average number of nodes, the
average number of nodes that, in a given time instant, are in
contact with a given node (the list of vehicles able to exchange
beacons according to the given communication protocol [19]),
and the mean rate at which nodes become requesters in the
given segment. Such a choice of parameters represents only
one of many possibilities. However, these parameters have
been chosen as they are typically used as input to the main
existing models (both analytic and data-based) of probabilistic
content caching based on opportunistic replications [20]–[22].
Moreover, such a choice has shown in our evaluations to enable
a high degree of accuracy in accounting for the peculiarities
of node mobility patterns, and their effects on the performance
of content delivery.

1) Label generation: In this step, a randomization procedure
is applied over the collected data. Specifically:

• For each mz , a set of random schemes (bj ,kj) j = 1, ..., J
is generated. In addition, a random process of request arrivals
is generated, based on the measured average rates.

• For each set of parameters (mz,bj ,kj), a simulation is
performed based on the random strategy (bj ,kj), the user
trajectories during the observation interval, and the given
request arrival process. The parameters measured, for each
segment, are the mean number of requesters present in the
segment, the mean hit ratio, the mean number of producers,
the mean time required to satisfy a content request, and
the mean number of nodes that are transmitting at a given
time instant. These parameters constitute the communications
feature vector cj,z , and they are the basis for the estimation
of the resource utilization and their associated costs.

For each j, z, (mz, cj,z) denotes the Segment Features
Vector associated with (bj ,kj) and time interval z (Table II).
Finally, each vector (mz, cj,z) is normalized, in order to
avoid numerical issues in the subsequent phases of the
process. To create the data set containing unbiased quadruplets
(mz, cj,z,bj ,kj), which not differ in any systematic way, we
apply a covariate adaptive randomization [23], which uses the
method of minimization by assessing the imbalance of sample
size among several covariates. This technique ensures no a
priori knowledge of group assignment and it prioritizes the

configuration sampling over the feature. Indeed, for a given
feature set mz several configurations (bj ,kj) are tested with
respect to the covariance of the measured hit ratio and mean
time for satisfying a request. Once collected such dataset, it
has been split into a training set and a test sets using the
stratified technique [24], [25], which holds the same ratio of
classes across each split. In order to avoid numerical issues,
we have normalized the data set and filled missing data with
their median values. The output of this phase is thus a data set
composed by quadruplets (mz, cj,z,bj ,kj), ∀z, j. Note that
this phase can be performed entirely offline.

This data set is enriched over time with new elements, as
long as the system measures new patterns of requests and
of mobility and it performs new simulations. Note that, the
contribution to the given data set of those elements derived
through simulations plays a key role in enabling the system
to effectively configure a DeepNDN scheme for relatively
infrequent scenarios, such as road accidents or disasters, for
which few measured data are typically available.

B. Computation of a DeepNDN strategy and deployment

As already stated, we assume that the management function
in the cellular infrastructure is constantly monitoring mobility
patterns and requests for contents. Based on these data, it is
also computing forecasts, in order to decide which contents
to offload to direct device-to-device communications. The
mechanism by which these forecasts are implemented is
out of the scope of the present paper. For each of those
contents to offload, the management function establishes a
time interval during which the offloading should be active, and
it elaborates detailed forecasts of mobility patterns and requests.
In addition, it establishes a target hit ratio and a maximum
delay for receiving a requested content based on the application
requirements. Let m be the forecasted mobility feature array
for the given observation interval. Given these inputs, the CNN
computes the replication and caching strategies (b,k) that
achieve the target hit ratio while minimizing the resource cost
for the whole observation interval. These parameters are then
communicated to all nodes in the scenario. In those cases
in which, during the operation of our scheme, new forecasts
of mobility become available, the system computes a new
strategy (b,k) for the remaining portion of the observation
interval based on such forecasts, and it injects the new values of
replication and caching parameters to all the nodes. Similarly,
if patterns of mobility and of content request vary significantly
during the duration of the observation interval, the management
function may split such interval in sub-intervals (defined in
such a way as to have a sufficient uniformity of the mobility
patterns within each of them), and apply the dimensioning
procedure described to each of them.

C. Convolutional Neural Network Architecture

In this section, we describe the overall structure of the
CNN at the basis of our DeepNDN dimensioning approach.
Figure 2 presents the structure and operation of our CNN.
The number of layers in each of the three steps determines



Figure 2. Architecture of the Convolutional Neural Network used to
compute resource-efficient replication and caching strategies (b,k)
for the DeepNDN communication scheme. Its inputs are the mobility
features m, the target hit ratio r0, and the maximum delay d

the depth of the learning architecture, and hence the level of
complexity of the correlations which it is able to capture. Such
correlations between different road segments are the result
of wireless propagation effects and of the spatio-temporal
patterns of mobility and of content request, and of their mutual
interactions. Indeed, the ability of CNN to capture both intra-
segment and inter-segment relations between features, and in
particular, to model complex correlations even among segments
which are distant in space, makes such a learning approach a
particularly good fit for the problem of optimally orchestrating
a DeepNDN scheme in realistic settings.

In step 1, our CNN learns local features correlations, such
as the spatio-temporal correlations between speed and node
density or the ratio between requester and producer. More
specifically, the convolution layer (Conv2D) captures the
correlation between features of the same road segment; the
Activation layer selects the most relevant local features; finally,
the max-pooling layer enhances computational performance by
reducing the data dimensionality [17]. Its output are the most
relevant local features per road segment.

The goal of step 2 is to enable the CNN to learn the
structure of complex inter-segment dependencies, particularly
those involving segments which are distant in space among
them, thus improving model accuracy. Therefore, step 2 is
composed by multiple instances of the convolutional layer,
each followed by an activation layer, which selects the most
relevant inter-segment features. The choice of the number of
Conv2D layers, as well as of the kernel size used in these layers,
depends on a tradeoff between computational complexity and
accuracy of the CNN.

Step 3 processes the previous results in order to reduce
data dimensionality and produce the strategies for DeepNDN
management. It is composed by a Flatten layer for data
dimensionality reduction, by a Dropout layer which contributes
to avoiding overfitting issues, and by a Dense layer which
reshapes data. The last layer is an Activation layer, which
selects the best strategy among a set of possible candidates,
providing as output the coefficients (b,k). The number of
iterations (i.e., epochs) of the above three steps has been set
according to the CNN learning rate derivative [17]. A crucial
aspect of the performance of our approach is the computational
load required by the three phases which compose it. Given
the potentially large amount of data to be collected and pre-
processed, the data collection is the most computationally

intensive. The amount of computation required is directly
related to the size of the training set, as well as to the number
of segments and features considered. In order to reduce such
a computational load, we have adopted a discretization of the
caching and replication parameters, casting Problem 1 into a
classification problem [17]. However, all the operations in this
phase can be executed offline (i.e., before the need for content
offloading and pre-fetching arises). Hence, their computational
complexity has no impact on the performance of the scheme.
The computations required to derive the DeepNDN strategy
for a specific content are performed at the moment in which
an offloading decision is made by the infrastructure. As this
decision is not made in real-time but based on forecasts (of say,
a few hours at least), it does not have an impact on the time
required to implement the caching and replication strategies.

V. NUMERICAL EVALUATION

In this section, we numerically assess the performance of
our approach to management of the DeepNDN communication
scheme, in both synthetic and measurement-based scenarios,
and we characterize the spatio-temporal strategies emerging
from our deep-learning-based management approach. Finally,
We compare our approach with vanilla NDN mechanism and
NDN full supported by opportunistic communications.

A. System setup

We assume nodes embed the IEEE 802.11p wireless access
protocol [15] with a maximum transmission power of 20 mW,
a minimum signal attenuation threshold of −89 dBm, and a
minimum path loss coefficient of 2, which correspond to
typical settings in a vehicular environment [15]. We simulate
content exchanges among nodes using Veins on OMNeT++
simulator [26], [27], whereas we use SUMO [28] for the
vehicular mobility simulation over a road grid. For each
segment, mobility features were measured using a sampling
interval of 1 ms, in order to accurately capture the dynamics
of mobility and content diffusion. In both scenarios, we used
a training set size of 2 · 105, which has proven sufficient to
achieve a high level of accuracy, and we performed a 10-fold
cross-validation. For testing, we considered a test set size of
5 · 103, sufficient to achieve confidence intervals of at most
3 % in all settings considered. Unless stated otherwise, the
coefficient β in the cost function in Problem 1 has been set to
1, in order to give equal weight to storage and communication
costs. The default values of target hit ratio (0.9) and observation
interval (1800 s) have been chosen to model applications with
tight performance requirements, and in which the DeepNDN
scheme must be effective over short time intervals.

B. Baseline scenario

In the first set of simulations, we considered a Manhattan grid
of 10 by 10 square blocks, each of side 100 m. The partition into
road segments has been such that every portion of road between
two consecutive crossroads consists in two road segments (one
per each roadway), plus a segment covering the center of each
crossroad, for a total of 460 road segments. In this scenario,



Figure 3. DeepNDN strategy, NDN scheme, for single-hop interest message
forwarding and for the case without limitations. Manhattan setup.

Figure 4. DeepNDN strategy, NDN only scheme, for single-hop IM forwarding
and for IM forwarding without limits. Manhattan setup. Maximum delay 5 s.

nodes model vehicles moving according to the Manhattan
Mobility Model with a turn probability of 0.25, equal for both
left and right turns [29], and a speed uniformly distributed
between 30 km/h and 50 km/h. Nodes enter the road grid from
segments at the border, at a rate of 0.0024 s−1 per border
segment. This resulted into an average of 100 vehicles in the
whole scenario, with a mean sojourn time of 92.2 s. Throughout
all the simulations, these settings never gave rise to a network
topology consisting of a single connected component. Instead
small, short lived clusters periodically formed at each crossroad,
due to vehicles queuing. At the beginning of the observation
interval, we assumed that each node has a 0.1 probability to
possess the content, and that there are no requesters. Then
during the observation interval, every time that a neutral node
entered the road grid, it became a requester with a probability
of 0.9. We use one content object, e.g. one Data Message, to
model the exchange of short video trailer or of a multimedia
advertisement. We assume that there is no need for fragment
the content into multiple Data messages, hence, one IM can be
satisfied by a single Data message. We leave the scenario with
multiple fragmented messages for the same content object for
future work. The maximum request delay has been set to 5 s, to
model applications which rely on very short-term predictions
of content requests.

For what concerns the propagation of the IM, we have
considered two configurations. In a first one (denoted as

Table III
MEAN RESOURCE UTILIZATION OF DEEPNDN IN THE MANHATTAN

SCENARIO. 98% CONFIDENCE INTERVAL OF 3%.

Forwarding Mean Transmitting
Strategy Availability Nodes
Single hop 0.49 8.2
Unconstrained 0.32 8.3

unconstrained) there has been no limitations to the maximum
number of hops which an IM can be forwarded. In addition,
we considered the case in which an IM can only be forwarded
from the requester to nodes that are in contact with it, i.e. we
set the IM max number of hops to 1 (the single hop strategy).
This second strategy aims at minimizing the communication
overhead due to forwarding of IM, which in scenarios with
large node clusters may jeopardize the communication channels,
significantly affecting the performance of our scheme.

As the box-plots in Fig. 3 and Fig. 4 show, in both
configurations our DeepNDN management strategies are able to
satisfy the target hit ratio with the given constraint on maximum
delay. In particular, these results show that our approach is
able to tune content replication and caching in such a way
as to bring the likelihood to not satisfying the performance
constraints to very low values (in over 5 · 103 simulations, less
than 3 % violated this constraint) while using only a small
portion of system resources. Table III shows the availability
(mean fraction of nodes with content), as well as the mean
number of simultaneous transmissions, for the two considered
configurations. As results show, restricting IM forwarding to a
single hop does not affect the ability of our approach to satisfy
the target performance, though it comes at the cost of a 53%
increase in the storage resources used.

The fact that our paradigm is effective in our scenario even
when limiting the IM forwarding to a single hop might lead
to assume that the mechanisms for NDN content retrieval
alone could be sufficient to achieve the target performance,
and that the contribution to the performance of DeepNDN
scheme given by opportunistic content replication plays only
a marginal role. In order to verify this, we have considered
the performance of another scheme, denoted as NDN, and
derived by the original DeepNDN scheme by setting to zero
the opportunistic replication parameters and to one the caching
probability. In this scheme, the content is cached only when
nodes route it from the source to the requester. As Fig. 4 show,
the NDN scheme systematically fails to deliver the content
within the maximum delay of 5 seconds. In addition, in Fig. 3
we see that even when assuming no limitations to the delay
with which a request can satisfied, and even when caching all
contents forwarded, content delivery based only on NDN is not
able to achieve the target hit ratio. In addition, while no content
disappearance has been observed with the DeepNDN scheme,
the percentage of contents disappeared from the scenario before
the end of the observation interval in the NDN scheme has
been of 11 % for the unconstrained case, and of 87 % in the
single hop case.



Figure 5. Mean number of neighbors per node. Luxembourg City.

Figure 6. Density Map of requesters. Luxembourg City setup, 7 AM - 7:30
AM. The Point of Interest is the region in light yellow.

C. Luxembourg Scenario

In order to perform a more realistic assessment of the
performance of our approach, we considered a scenario
corresponding to a square area of side 1 km in the center of
Luxembourg City (Fig. 5). The road grid, as well as its partition
in road segments, is derived from OpenStreetMap [30]. The
partition is performed in a similar way as in the Manhattan grid,
with at least two segments for each portion of the road between
two crossroads, for a total of 234 segments. The measurement-
based vehicular mobility traces have been derived from [31],
and they refer to a time interval with rush traffic (7 AM to
7:30 AM), with an average of 82.7 nodes present in the area
in the considered operational interval. Figure 5 shows the
mean number of nodes which are in contact with a node in
the considered area. The map indicates that in the given time
interval, despite the rush hour, a high density of nodes (and a
potentially a high likelihood of clustering) is present only in
limited portions of the considered area.

Unlike the baseline scenario, to make the considered scenario
more realistic, we have assumed that a point of interest (e.g.,
a cinema) is present in the map (light yellow spot in Fig. 5),
and that the likelihood of becoming a requester when entering
a given segment increases when the distance from the point of
interest decreases. The resulting average spatial distribution of
requesters is shown in Fig. 6.

In such a scenario, we have evaluated the performance of
our DeepNDN strategy with a maximum request delay of 10 s,
and we have compared it with the NDN strategy, in which no

Figure 7. DeepNDN strategy, NDN only scheme, and without limit hops.

Table IV
RESOURCE UTILIZATION LUXEMBOURG SCENARIO. 98 % CONFIDENCE

INTERVAL OF 3 %.

Approach Mean Transmitting
Availability
(%)

Nodes (%)

NDN 52.5 43.9
All-on 62.4 44.7
DeepNDN 30.8 46.7

opportunistic content replication takes place. In both strategies,
no limit has been set on IM forwarding. In this setup, our
DeepNDN strategy managed to achieve a hit ratio larger than
0.9 in all the simulations. In the NDN only scheme instead, and
despite the highly favourable conditions for NDN performance
(in terms of correlation in space between zones of a high user
density and zones with high density of requesters), only 18.3%
of requesters received the content within the maximum delay.
This result suggest that in realistic vehicular scenarios, and even
in conditions of peak vehicle density and high node clustering
around the point of interest, only a combination of NDN with
a strategy for opportunistic content replication and caching
allows achieving the target minimum hit ratio. In order to gain
insights into this result, in Fig. 8, we have put in evidence
those road segments where contents are exchanged only through
opportunistic replication (in green), only through NDN (in blue),
and with both mechanisms (in cyan). The figure shows that
in those regions which surround the area with a high density
of requesters, content is retrieved based only on opportunistic
replications. In these areas, opportunistic replications have also
the function of increasing the amount of content redundancy
around the point of interest, by delivering content to those
users who are approaching it. Instead, in those segments in
which nodes tend to form clusters, and particularly around the
point of interest, content is delivered through a combination of
NDN and opportunistic content replications, instead of only via
NDN. In these segments, the role of opportunistic replications
is to maintain a sufficiently high amount of content redundancy
for the NDN-based content retrieval to be effective within the
given maximum retrieval delay. In addition, they make sure
that the likelihood of content disappearance remains very low
throughout the scenario.

Table IV reports, for the Luxembourg scenario, the amount



Figure 8. Opportunistic replication (in green), only through NDN (in blue)
and with both mechanisms (in cyan). Luxembourg City, 7 AM - 7:30 AM.

of resources employed by our DeepNDN scheme, as well
as by the NDN only scheme. In addition, we have also
considered the all-on scheme, derived by DeepNDN by setting
all caching and replication coefficients are set to one. As we
have verified, both the DeepNDN and the all-on approach
satisfy the performance targets in the considered scenario.
However, our deep learning based management approach is
able to achieve those performance goals while substantially
decreasing the amount of content redundancy required in the
network with respect to both all-on and NDN only schemes.
Note that communication costs of the all-on scheme are
substantially similar to the DeepNDN case, as in the all-on case
a higher availability brings a lower rate of content transfers,
seen that a higher fraction of the opportunistic contacts are
among nodes which have the content.

VI. RELATED WORK

A number of works propose approaches which enable NDN
to cope with some of the effects of node mobility and of
network fragmentation. [5], [32] focus on the specific issue of
receiver and source mobility, while [6] considers disruptions
due to changes in the network topology. [14] proposes a version
of NDN based on epidemic forwarding which proves effective
in sparse scenarios. These approaches apply to scenarios with
relatively infrequent configuration changes, and they imply a
significant increase in communication overhead. Moreover, they
leave open the issue of content retrieval across node clusters
and in sparse settings, which is the focus of the present work.

Ascigil et al. [33] developed an opportunistic NDN content
discovery, which allows nodes to localize cached copies
of data in off-path vehicles using the trails left from data
messages when delivered from the data source to the requesters.
Gündoğan et al. [34] introduce QoS support for NDN networks
by proposing a technique to regulate the NDN tables and
probabilistic-caching parameters to favour either prompt or
reliable content forwarding. The study discussed in [12]
considers disaster scenarios, with a network topology which,
though fragmented, is relatively stable. It proposes a scheme
which integrates NDN and DTN routing with the notion of node

clusters and of "data mules" for inter-cluster content retrieval.
[13] proposes a protocol stack integrating the NDN and DTN
architecture, addressing some interoperability issues. These
solutions however do not address the issue of how to guarantee
a target performance (in terms of delivery ratio and maximum
delay) in a fragmented and dynamic network, in a resource-
efficient manner. Our proposed scheme tackles these issues by
adapting to dynamic network topologies and managing network
resources in an effective way.

In vehicular NDN, several studies exploit the fixed network
infrastructure in order to cope with intermittent connectivity
between vehicles [35]–[38]. Wang et al. [35] propose a Road
Side Unit (RSU) controlled traffic information dissemination
system, in which RSUs are used to find alternative paths
when there is no connectivity between vehicles. Authors
in [36] employ RSUs for sending the IM and retrieving the
DM. [37] exploits the global network topology view that the
infrastructure can provide to proactively inject the content
on selected vehicles in order to improve the overall content
delivery. In [39], the infrastructure is used for exchanging
content among different areas, while the NDN mechanism
is used to deliver the content object within each area. In all
these approaches however, the infrastructure caches and directly
delivers content to at least a portion of the users. The fraction
of content deliveries performed by the infrastructure depends
on the specific approach and setting considered, taking a
potentially heavy toll on infrastructure resources. Instead, in our
approach content delivery is delegated completely to vehicular
ad-hoc communications. Authors in [38] propose the concept
of vehicular micro clouds, clusters of vehicles cooperating to
provide services and resources, similar to FC. [40] proposes a
content-centric dissemination scheme. Its solution is based on
a policy which sets the order of content exchanges on a contact
between two nodes, and the probability for a node to drop a
content in a way which tries to maximize the total delivery rate
over a set of contents of different popularity. In Grassi et al. [41],
the considered region is partitioned into areas. The proposed
solution connects the producer and requester local areas by
geocasting the content object in a delay-tolerant manner. These
approaches however do not optimize resource usage, and they
do not address the issue of content persistence within the given
network. In [32], FC is used together with NDN in order to
address the specific issue of mobility of producer. However,
no global resource optimization is performed, and the impact
of content floating on the overall performance of the content
delivery process is not considered. In our work, we exploit
the global knowledge of the infrastructure to optimize content
replication and caching probabilities over time, ensuring content
persistence in the given area.

VII. CONCLUSION

In this work we have proposed DeepNDN, a communication
scheme based on the joint application of NDN and of probabilis-
tic spatial content caching, for content retrieval in fragmented
and dynamic vehicular ad-hoc networks. We have presented a
data-based approach for dynamic management of DeepNDN,



capable of achieving a target hit ratio in a resource-efficient
manner, by locally modulating the content diffusion process.
As a followup, we intend to extend our management approach
to include the resource cost of infrastructure support, and
to scenarios with heterogeneous node populations, including
cars, drones and pedestrians. Moreover, we want to extend
DeepNDN in several vehicular scenarios such as highway,
residential district, and industrial area.

VIII. ACKNOWLEDGMENT

This work was undertaken under the CONTACT project,
CORE/SWISS/15/IS/10487418, funded by the National Re-
search Fund Luxembourg (FNR), and by the Swiss National
Science Foundation (SNSF), project no. 164205. This work
was partially supported by Hasler MOBNET, and by COST
RECODIS projects.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C.
Papadopoulos, L. Wang, B. Zhang, et al., “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 66–73, 2014.

[2] C. Felipe, A. Boukerche, L. Villas, A. Viana, and A. Loureiro, “Data
Communication in VANETs: A Survey, Challenges and Applications,”
Ad Hoc Networks, Mar. 2014.

[3] G. Tyson, J. Bigham, and E. Bodanese, “Towards an information-
centric delay-tolerant network,” in 2013 IEEE Conference on Computer
Communications Workshops, IEEE, 2013, pp. 387–392.

[4] J. M. Duarte, T. Braun, and L. A. Villas, “MobiVNDN: A distributed
framework to support mobility in vehicular named-data networking,”
Ad Hoc Networks, vol. 82, pp. 77–90, 2019.

[5] M. F. Al-Naday, M. J. Reed, D. Trossen, and K. Yang, “Information
resilience: source recovery in an information-centric network,” IEEE
network, vol. 28, no. 3, pp. 36–42, 2014.

[6] V. Sourlas, L. Tassiulas, I. Psaras, and G. Pavlou, “Information resilience
through user-assisted caching in disruptive content-centric networks,”
in IFIP Networking, IEEE, 2015, pp. 1–9.

[7] A. McMahon and S. Farrell, “Delay-and disruption-tolerant networking,”
IEEE Internet Computing, vol. 13, no. 6, pp. 82–87, 2009.

[8] A. A. V. Castro, G. Di Marzo Serugendo, and D. Konstantas, “Hovering
Information - Self-Organising Information that Finds Its Own Storage,”
in IEEE SUTC, 2008, pp. 193–200.

[9] E. Hyytiä, J. Virtamo, P. Lassila, J. Kangasharju, and J. Ott, “When
does content float? Characterizing availability of anchored information
in opportunistic content sharing,” in INFOCOM, IEEE, Apr. 2011,
pp. 3137–3145.

[10] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, and J. Kangasharju, “Floating
content: Information sharing in urban areas,” in PerCom 2011, 2011,
pp. 136 –146.

[11] G. Manzo, M. A. Marsan, and G. A. Rizzo, “Analytical models of
floating content in a vehicular urban environment,” Ad Hoc Networks,
vol. 88, pp. 65–80, 2019.

[12] E. Monticelli, B. M. Schubert, M. Arumaithurai, X. Fu, and K.
Ramakrishnan, “An information centric approach for communications
in disaster situations,” in LANMAN, IEEE, 2014, pp. 1–6.

[13] H. M. Islam, A. Lukyanenko, S. Tarkoma, and A. Yla-Jaaski, “Towards
disruption tolerant ICN,” in ISCC, IEEE, 2015, pp. 212–219.

[14] Y.-T. Yu, J. Joy, R. Fan, Y. Lu, M. Gerla, and M. Sanadidi, “DT-ICAN:
A disruption-tolerant information-centric ad-hoc network,” in 2014 IEEE
Military Communications Conference, IEEE, 2014, pp. 1021–1026.

[15] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International
Standard for Wireless Access in Vehicular Environments,” Jun. 2008.

[16] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, “A
Survey of Software-Defined Networking: Past, Present, and Future of
Programmable Networks,” Communications Surveys Tutorials, IEEE,
vol. PP, no. 99, pp. 1–18, 2014.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press
Cambridge, Mar. 2016.

[18] G. Manzo, S. Otálora, T. Braun, M. Ajmone Marsan, G. Rizzo, and
H. Nguyen, “DeepFloat: Resource-Efficient Dynamic Management of
Vehicular Floating Content,” in ITC 31, 2019.

[19] M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein, “Vehicle-to-
Vehicle Communication: Fair Transmit Power Control for Safety-Critical
Information,” IEEE Transactions on Vehicular Technology, 2009.

[20] G. Manzo, R. Soua, A. Di Maio, T. Engel, M. R. Palattella, and
G. Rizzo, “Coordination Mechanisms for Floating Content in Realistic
Vehicular Scenarios,” in IEEE MobiWorld, 2017.

[21] G. Manzo, M. A. Marsan, and G. Rizzo, “Performance modeling of
vehicular floating content in urban settings,” in 29th International
Teletraffic Congress (ITC 29), IEEE, vol. 1, Sep. 2017, pp. 99–107.

[22] G. Manzo, J. S. Otalora, M. A. Marsan, and G. Rizzo, “A Deep
Learning Strategy for Vehicular Floating Content Management,” ACM
SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 159–
162, Jan. 2019.

[23] N. Scott, G. Mcpherson, C. Ramsay, and M. Campbell, “The method
of minimization for allocation to clinical trials. A review,” Controlled
clinical trials, Jan. 2003.

[24] M. Shahrokh Esfahani and E. R. Dougherty, “Effect of separate
sampling on classification accuracy,” Bioinformatics, Nov. 2013.

[25] “How many stratification factors are “too many” to use in a random-
ization plan?” Controlled Clinical Trials, 1993.

[26] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved IVC analysis,” IEEE
Transactions on Mobile Computing, 2011.

[27] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” ICST Simutools, 2008.

[28] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “SUMO
(Simulation of Urban MObility), an open-source traffic simulation,”
MESM, 2002.

[29] A. Hanggoro and R. F. Sari, “Performance evaluation of the Manhattan
mobility model in vehicular ad-hoc networks for high mobility vehicle,”
in IEEE COMNETSAT, 2013.

[30] OpenStreetMap contributors, Planet dump retrieved from
https://planet.osm.org, https://www.openstreetmap.org, 2017.

[31] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario: 24 hours of mobility for vehicular networking research,” IEEE
VNC, 2015.

[32] J. M. Duarte, T. Braun, and L. A. Villas, “Source mobility in vehicular
named-data networking: An overview,” in Ad Hoc Networks, Springer,
2018, pp. 83–93.

[33] O. Ascigil, V. Sourlas, I. Psaras, and G. Pavlou, “Opportunistic off-
path content discovery in information-centric networks,” in 2016 IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2016, pp. 1–7.
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