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Smartphone-Based Adaptive Driving Maneuver
Detection: A Large-Scale Evaluation Study

German Castignani, Thierry Derrmann, Raphaël Frank, and Thomas Engel

Abstract— The proliferation of connected mobile devices
together with advances in their sensing capacity has enabled a
new distributed telematics platform. In particular, smartphones
can be used as driving sensors to identify individual driver
behavior and risky maneuvers. However, in order to estimate
driver behavior with smartphones, the system must deal with
different vehicle characteristics. This is the main limitation of
existing sensing platforms, which are principally based on fixed
thresholds for different sensing parameters. In this paper, we
propose an adaptive driving maneuver detection mechanism that
iteratively builds a statistical model of the driver, vehicle, and
smartphone combination using a multivariate normal model.
By means of experimentation over a test track and public
roads, we first explore the capacity of different sensor input
combinations to detect risky driving maneuvers, and we propose
a training mechanism that adapts the profiling model to the
vehicle, driver, and road topology. A large-scale evaluation study
is conducted, showing that the model for maneuver detection and
scoring is able to adapt to different drivers, vehicles, and road
conditions.

Index Terms— Driving maneuver detection, anomaly detection.

I. INTRODUCTION

MONITORING driving activities is gaining increasing
attention. In this context, ubiquitous computing is

becoming a promising alternative to traditional telematics
systems. The increasing availability of advanced smartphones
equipped with a large range of sensors (e.g., GPS, accelerom-
eter, gyroscope, magnetometer) and network interfaces allows
the development of connected applications that can be used to
analyze and evaluate driving behavior in real time.

Two main application fields have been identified for which
such systems could generate new revenue streams. The first
includes fleet management systems. Traditionally, dedicated
embedded systems have been mounted inside vehicles to
monitor driving activities. It is expected that in the near
future such systems will become obsolete as dedicated mobile
applications for smartphones can be used for the same purpose.
Further, real-time vehicle information gathered through a
wireless On-Board Diagnostics (OBD-II) adapter connected
to the smartphone would allow collecting more advanced
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metrics such as fuel consumption, RPM or vehicle fault codes.
Examples of such applications include Automatic, Dash or
Enerfy, which are publicly available for Android and iOS. The
primary objective of these systems is to monitor the location
and condition of corporate vehicles and motivate the driver
to behave more efficiently (e.g., reduce the energy footprint,
reduce travel time).

The second application field is the insurance telematics
market, including Pay As You Drive (PAYD) or Usage
Based Insurance (UBI). By using smartphones, the insur-
ance companies do not have to provide, mount and main-
tain expensive monitoring hardware. Also, individual drivers
are more likely to use their personal mobile device as a
telematics system instead of a black box that they cannot
control [1].

As opportunities are growing, research has focused on how
mobile phone sensors can be exploited to provide meaningful
data that accurately describes the risk profile of a driver.
Several studies based on the Virginia Tech 100-Car data set [2]
have shown the high correlation that exists between sensor data
and driving riskiness (e.g., involvement in crashes and near-
crashes) [3], [4]. The common approach to measure driver
riskiness is to compute a single score (typically between
0 and 100) that represents the driving skills of a user. This
is not a trivial task since many factors need to be taken
into account to obtain fair and comparable results. Current
approaches typically rely on fixed thresholds to identify risky
driving maneuvers (see Section II). The most common maneu-
vers that can be detected using mobile phone sensors are: rapid
acceleration, hard braking, speeding and aggressive cornering.
However, considering the large number of different vehicles
with a variety of performance and mechanical characteristics,
it is clear that a static profiling approach will not provide a
fair, representative and comparable scoring metric for every
driver and vehicle combination.

In this article, we propose an adaptive driving maneuver
detection method that relies on a Multivariate Normal distrib-
ution (MVN) to build a statistical model of the user’s driving
characteristics. We first introduce a feature set obtained by
fusing the output of different mobile phone sensors which
can potentially be used to detect and classify lateral and
longitudinal driving maneuvers. Next, we describe how the
continuous training of the model is performed. By means of
an extensive field experiment conducted on a test track to
create labelled datasets, we evaluate how different feature sets
impact classification and estimate the hyperparameters of the
learning algorithm. We propose a risk function that can be used
to dynamically adjust the score of the driver by taking into
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account the number, severity and sequence of detected events.
In order to validate the scoring function, we conducted a large
scale experiment, capturing more than 2.8 million kilometers
of driving data from around 4,800 distinct drivers in the greater
region of Luxembourg.

The remainder of this article is organized as follows.
In Section II, we introduce the related work on smartphone-
based driver profiling mechanisms. In Section III, we present
the theoretical aspects of the proposed MVN-based model,
including the input definition, feature transformation and train-
ing mechanism. In Section IV, we present a model parameteri-
zation study for the event classifier based on experimental data
collected with smartphones in both a controlled environment
(test track) and public roads. A large scale validation study
for the proposed scoring function is presented in Section V.
Finally, in Section VI, we conclude the paper and present
perspectives for the future work.

II. RELATED WORK

Several methodologies of driver profiling and maneuver
classification have been proposed in the past, and with the
rising market penetration of smartphones, the potential user
base of smartphone-based techniques has increased recently.
Engelbrecht et al. [5] provide a survey giving an overview of
different smartphone-based sensing applications inside vehi-
cles. More specifically, these applications range from the
detection of maneuvers, drunk driving and accidents to driver
assistance systems. The authors stress that the adoption of
these systems can be slow, an issue which we address in
this article through an incentivized, gamified study. Given
the focus of our work on maneuver detection, we mainly
discuss the existing platforms on this topic in the remainder
of this section. They typically involve the integrated Inertial
Measurement Units (IMU) along with satellite-based position-
ing (GNSS/GPS) data.

In a GNSS-only study, Wahlström et al. [6] propose a dan-
gerous cornering detection system based on Kalman-filtered
GNSS data, and show that it can be sufficient for the detection
of the majority of cornering events in their evaluation by
means of a study with three smartphones. As they report 40%
false alerts or missed maneuvers, they discuss the possibility
of taking IMU data into consideration to improve the proposed
test statistic and detection accuracy.

In this vein, Paefgen et al. [7] propose a technique mak-
ing use of both GPS and IMU data, while relying on
predefined thresholds (e.g., an accelerometer output of 0.1g
for acceleration and braking events and 0.2g for steering).
The authors present a measurement study to compare event
detection using smartphone sensors to those detected using
a fixed-position IMU. They observe that the obtained event
count distribution matches different statistical distributions in
smartphones and IMUs; this was mainly due to variations in
smartphone-to-car fixing and positioning inside the vehicle,
which can dramatically affect the pre-established thresholds.
However, the authors find only weak correlations between
smartphones and IMU-based events and describe some possi-
ble solutions to enhance smartphone event detection, including
a dynamic calibration process [8].

Johnson and Trivedi [9] present a Dynamic Time Warp-
ing (DTW) based driver profile algorithm, MIROAD, using
smartphone sensors and GPS. They evaluate the performance
of different sensor fusion sets to detect lateral and longitudinal
movements. By evaluating over 200 driving events, the authors
show that the sensor fusion set composed of the x-axis
(i.e., gravity axis) rotation rate, y-axis (i.e., lateral movements)
acceleration and pitch, provides the best classification perfor-
mance using DTW. This study relies on maneuver templates
that generalize to different cars, but it is not clear whether other
phones and drivers would yield similar classification results.

Eren et al. [10] propose a driver profiling algorithm that dis-
tinguishes between risky and safe drivers, using a supervised
learning approach. As sensing data, they consider IMU data
to detect start and end times of driving events (e.g., sudden
maneuvers, aggressive steering, braking or acceleration) using
moving averages and empirical thresholds. The authors com-
pute the similarity of each event to template data (i.e., risky
and safe event patterns that had been previously collected)
using Dynamic Time Warping (DTW) and apply Bayesian
classification to decide whether a driver is risky or safe. They
present an evaluation study for fifteen drivers using iPhones
and fixed departure and arrival points, showing a successful
classification rate of 93.3 %. However, using their method
to compute event template data appears to be unfeasible for
a large and heterogeneous sensing environment, considering
different types of vehicles and devices.

Joubert et al. [11] use in-vehicle data recorder (IVDR)
data, more precisely velocity and accelerometer data, from
124 drivers (driving different vehicles) and build a risk space
over the full data set, i.e. an aggregate distribution over all
drivers. They use lateral, longitudinal and vertical motion
features. Their approach is population-based, i.e. a single,
global model is built centrally, yielding identical risk estimates
at identical feature values, independent of the drivers and
cars. It is a matter of discussion whether a car’s performance
(in particular engine and brakes) should impact the definition
of which acceleration values are to be considered safe and
unsafe.

In contrast to these studies, we want to propose a model
that generalizes to different driver, car and smartphone com-
binations, using unsupervised learning of both GPS and IMU
derived features. We learn the distribution of these features for
each individual’s driving behavior, car and phone combination,
and evaluate it online, directly on the phone. In previous
work [12], we described a set of experiments to analyze the
performance of smartphones to detect risky driving events.
In particular, we introduced a sensor fusion algorithm and
a Fuzzy System to detect aggressive steering, acceleration
and braking maneuvers. We evaluated the system in a small
experiment using a single car and smartphone combination.
By contrast, in this article, we avoid relying on a prior training
set specific to the used car and phone, but make use of some
of the signal processing techniques developed. To reflect the
main advantage–the adaptability–of our unsupervised model,
we evaluate it in a large-scale field study with 4,800 drivers
using different cars and smartphones. We compare the driver
scores to a corresponding survey and eco-driving scores, which
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we preferred over a direct comparison to previous, supervised
models that would have required labeled driving maneuver
data for arbitrary car/phone combinations.

III. MVN-BASED DRIVING MANEUVER DETECTION

In this section, we describe how to use a Multivariate
Normal (MVN) model to detect risky driving maneuvers and
profile drivers. In the research literature, we can find sev-
eral examples of anomaly detection problems that have been
addressed using MVNs [13], [14]. However, to the best of our
knowledge, this is the first time an MVN approach has been
considered for risky driving maneuver detection. As introduced
in Section II, existing solutions use driver profiling algorithms
that identify high sensor outputs or pre-established patterns
in order to declare a risky driving maneuver, and therefore
decrease the driver’s score. However, given the heterogeneity
of mobile devices and vehicles, such a profiling system needs
to adapt its parameters to each individual context. Traditional
fixed threshold or supervised Machine Learning techniques
(e.g., Neural Networks, Naive Bayes, SVM) may be suitable
for designing such a driver profiling mechanism but require
previous knowledge of the training samples, indicating the
expected values of the input variables at the exact time a
risky maneuver is performed. Consequently, the generation of
such a training data set for risky driving maneuvers for many
different devices and vehicles becomes unfeasible. Moreover,
we cannot expect target users of the driver profiling platform to
manually label risky driving maneuvers in a controlled training
phase. Finally, an MVN-based anomaly detection seems to fit
well with the problem we are modeling. First, it provides a
high flexibility by dynamically adapting to different driving
conditions with a periodic update of its parameters. Also, given
that it does not require any preliminary knowledge on the
driving maneuvers it has to detect, it can be applied to any
type of vehicle and mobile device.

In general, the MVN model has many advantages over other
approaches for anomaly detection: (i) There is no need to
establish rule sets or thresholds to detect risky maneuvers.
The probability of an observation enables the assessment of
driver behavior in a continuous fashion rather than binary
classification (i.e., distinguishing between a risky and a non-
risky driving maneuver). (ii) The model can be estimated effi-
ciently on a mobile phone and can be continuously retrained
to improve the parameter estimates. (iii) It is easy to interpret
the model, since the sampling distribution probability density
can easily be represented visually, e.g. by contour plots.
(iv) Some of the input variables (e.g. GPS acceleration and
bearing variation) are normally distributed and thus lend
themselves naturally to this kind of model.

A. General Architecture

The general architecture of the proposed model can be
divided into two phases. In the initialization phase, the mobile
device starts collecting input variables that are then trans-
formed into a two-dimensional feature space that represents
the axes of movement of the vehicle. These features are
then stored in a training buffer that will finally serve to

Fig. 1. Maneuver detection and retraining phase.

generate the first MVN model using the Maximum Likelihood
Estimator (MLE). After the initialization phase, the current
MVN model is adapted to new data samples regularly in the
retraining phase and updated, as shown in Fig. 1, while also
being used for the maneuver detection. As input variables,
we consider motion sensor variables that are available in
modern smartphones. The first component of the input vector
o = [σ( j), μ(y),�v,�b, v] is the standard deviation of
the jerk, σ( j). The jerk is calculated as the time derivative
of the norm of the acceleration vector using the device’s
accelerometer. This variable is able to provide a better fit
to aggressive driving maneuvers than the raw acceleration,
which can be greatly affected by vibrations due to speed.
Then, we consider the average yaw rate, μ(y), the angular
velocity measured with the device’s magnetometer. Finally,
we consider GPS input: the speed, v, the speed variation, �v,
and the bearing variation, �b.

Note that the GPS variables provide a much lower sam-
pling rate than motion sensor variables (i.e., 1 Hz against
20 to 200 Hz). All variables are synchronized in the mobile
device by buffering motion sensing data between two consec-
utive location updates. The input variables σ( j) and μ(y) are
then calculated over this buffer. The input vector refresh rate
is fixed at a rate of 10 Hz in order to provide an accurate
short-term view of potential maneuvers.

The proposed MVN model considers a two-dimensional
feature space X to obtain an interpretable model of longitu-
dinal and latitudinal features. We define a feature x ∈ X as a
function of the input data o having the following properties:
i) extreme values of the feature represent risky or abnormal
driving maneuvers, ii) feature distribution can be approximated
by a Gaussian distribution. In Section IV, we propose different
feature sets based on the input variables in o and we evaluate
their suitability for identifying risky driving maneuvers.

B. Model Definition and Training Methodology

The MVN model can be defined by the multivariate
Gaussian probability density function in Eq. 1:
p(x | μ,�) = 1

(2π)
d
2 |�| 1

2

exp
(
− 1

2 (x − μ)T �−1 (x − μ)
)

(1)

p(x | μ,�) is the multivariate Gaussian probability density
function, where x denotes the features that we consider,
d denotes the dimension of the feature space, and θ = (μ,�)
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denotes the parameters of the distribution. Note that in our
approach, we want to dynamically estimate θ on each individ-
ual mobile device. Using the probability density function with
the estimated θ , we can calculate the likelihood of a given
observation o. Based on the likelihood, we can distinguish
between a common observation (i.e., that corresponds to
normal driving behavior) and anomalies (i.e., an abnormal
driving maneuver).

The estimation of the model parameters implies a training
process. The system is initially trained after m input samples
and then a retraining phase is triggered every n subsequent
input samples in order to update the model parameters.
In both the initial training and the retraining phases, we
estimate the set of parameters θ using MLE shown in Eq. 2.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ̂ = 1

n

n∑
i=1

(xi )

�̂ = 1

n

n∑
i=1

(xi − x)(xi − x)T
(2)

As for the retraining phase (see Fig. 1), the model is built
by considering not only n new samples collected since the
previous model update but also a number of samples r that
are resampled from the previously computed model. The MLE
update is computed over this sample set and a new, updated
model is obtained.

However, updating the model is a sensitive operation: there
is a trade-off between the performance of the risky maneuver
detection and the adaptability of the model. In other words,
even though a frequent retraining strategy (i.e., a low n and
a low r ) results in a rapid adaptation of the model to new
conditions (e.g., a change in the driver’s driving style or road
conditions), it can greatly impact the quality of maneuver
detection by incorporating short-term data samples into the
model. The objective is always to avoid updating the model
with low-variance input samples, i.e., samples that reflect a
monotonous driving behavior, like driving on a straight line
at constant speed. In order to verify that the model update is
useful, we compute the determinant of the covariance matrix
of the new n data samples.

In more detail, we use a criterion based on the determinant
of the covariance matrix of the newly-collected samples (n)
and the current model resampled data (r ), as shown in Eq. 3.
The rule used to update the current model is expressed in Eq. 4,
in which we simply compare the ratio u to a predefined limit.
This predefined limit is empirically defined in Section IV.

u := det (�n)

det (�r )
(3)

{
u ≥ ulim : update

u < ulim : continue
(4)

Using this rule, we can guarantee that we do not degrade the
sampling distribution by fitting data with very low variance.
The newly-computed model reflects driver behaviour and can
adapt to car and driving style changes, as its parameters are
periodically re-estimated. Thus, the anomaly detection can
recover from abrupt changes in the environment.

C. Driving Maneuver Detection

For every given input o and its corresponding features x,
the proposed model outputs a metric for the severity (or risk
factor), that can later be used to score the driver. To this end,
we propose a cut-off quantile value, Qlim , which marks the
quantile limit between very common observations and those
we consider relevant for anomaly detection. Qlim defines a
cut-off probability value, plim , which can be used to classify
the samples. Let plim be the model-dependent inverse CDF
value of Qlim , and Q(x) the (approximate) quantile of the
feature transform x of observation o, we can then propose the
severity metric of Eq. 5.

s(x) :=
⎧
⎨
⎩

0 if p(x | θ) ≥ plim

1 − Q(x)

Qlim
if p(x | θ) < plim

(5)

Eq. 5 defines a normalized metric of how anomalous an
observation is. Note that the value of Qlim (and correspond-
ingly, plim ) shifts the limit quantile of observations of interest.
If a lower value of Qlim is chosen, more observations will be
considered to be anomalies but these additional observations
will have lower severities. In this article, we set Qlim := 0.01,
or approximately μ ± 2.5σ , but lower values of Qlim would
yield comparable results (with additional reported outliers
having low severities). We chose this value in accordance to
the three-sigma rule, while slightly reducing the limit quantile
to capture samples leading up to outliers as well.

Dm(x1, x2) =
√

(x1 − x2)T �−1(x1 − x2) (6)

s(x) :=

⎧
⎪⎨
⎪⎩

0 if Dm(x, μ) < Dlim

1 − e− Dm (x,μ)2

2

Qlim
if Dm(x, μ) > Dlim

(7)

wi th Dlim := √−2 · log(1 − Qlim )

In the bivariate case, we can rewrite the severity using
the Mahalanobis distance (Eq. 6) [15]. Eq. 7 shows that we
can then compute the severity only using this distance. Since
we are only interested in the low probability regions of the
severity, we can thus avoid sampling and constructing a large
Empirical Cumulative Distribution Function to approximate
the quantiles. This improves the computation precision of the
metric because the need for approximation is eliminated.

IV. MODEL PARAMETERIZATION BASED ON

CLOSED-LOOP EXPERIMENTS

In this section, we explore the design parameters of the
MVN driver profiling model based on real experiments that we
carried out on a test track and public roads. In the testbed, we
create labelled data by logging when risky driving maneuvers
were performed, which we can then use to choose the design
parameters of our model.

A. Testbed Setup

The experiments were carried out using a Toyota Prius and
a Samsung Galaxy S4 (GT-I9505) mounted in a car holder.

The first design parameter we need to consider is the
feature set. To this end, we carried out a number of driver
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TABLE I

FEATURE SETS

maneuvers in a controlled environment in two different driving
modes, namely calm and aggressive. We focused on three
baseline scenarios: (1) acceleration, braking and steering,
(2) slalom maneuvers, and (3) U-turns. All these maneu-
vers were performed in the CFC Luxembourg [16], a large
driving circuit in the north of Luxembourg, and have been
repeated several times, alternating between calm and aggres-
sive driving patterns. For the acceleration, braking and steering
scenario, we selected a 550 m long oval track inside the
main track, composed of two straight lines of 240 m each
and two curves. In this case we alternated six aggressive
and calm laps (see Fig. 3a). For the slalom scenario, we
have alternated slalom steering phases at low and high speed
(25 km/h and 35 km/h respectively) on a straight line with
obstacles (see Fig. 3b). Finally, the U-turn maneuvers were
made on a short oval track, doing an aggressive U-turn
(at 45 km/h) in the first curve and a calm U-turn (at 25 km/h)
in the second curve (see Fig. 3c).

The second design parameter is the choice of the retraining
strategy, which is defined as the number of new samples to
consider for retraining (r ) and the optimal update criterion
limit (ulim ). To determine this, we collected a much larger
data set that included urban roads and highways. During this
trip, which lasted 40 minutes and traversed a 30 km path, we
considered a mix of driving environments. The first half of
the trip includes urban and suburban driving (i.e., maximum
speed of 70 km/h), while the second half of the trip used a
highway, where we attained a maximum speed of 150 km/h.
During the whole trip, we triggered thirty risky maneuvers
(hard acceleration, braking, steering and slalom) whose start
and end time were manually logged in the mobile device by
slightly pressing the touchscreen at the beginning and end of
the maneuver.

B. Feature Selection

In order to identify the most suitable feature set, we have
used the test track driving maneuvers data set and computed
offline the performance of the different feature sets in terms
of the output severity of the MVN classifier. In order to
obtain an interpretable model that can make use of the
Mahalanobis distance (cf. Sec.III-C), we have focused on three
two-dimensional candidate feature sets. They represent the
possible risky maneuvers of the driver in the longitudinal and
lateral axes of movement.

1) Candidate Feature Sets: Table I summarizes the compo-
nents ( f1 and f2) of the three feature sets (FS). FS1 simply
consists of the GPS input data. This is the baseline feature set,
and we expect the features to be nearly independent of each
other, and thus not mandatorily require a multivariate model.
The second feature set that we consider consists of the product
of the GPS input data and the corresponding sensor outputs,

Fig. 2. Mitigating heteroscedasticity of acceleration.

i.e. σ( j) and μ(y). Hence, the features will indicate if there
is constructive consensus between the input values. The third
feature set incorporates the current speed (v) into the product,
so as to mitigate the heteroscedasticity (i.e. heterogeneous
variance) of the features. In more detail, Fig. 2 shows the
evolution of the speed at maximum possible acceleration of
a Toyota Prius in a straight line. To do this experiment,
we started from 20 km/h and we fully pushed down the
accelerator pedal until the maximum speed (around 150 km/h)
was attained. We can observe the decay of �v for increasing
speed, resulting in a reduced variance of the �v · σ( j) term
in the feature. In order to mitigate this effect, we added a new
term to the product in the third feature. As shown in Fig. 2,
we finally chose to use speed as a linear function, since we
did not wish to overfit the profile of this particular car, and
to avoid penalizing more powerful cars with a more linear
acceleration curve. Note that we want the model to capture the
changing variance of acceleration in relation to speed without
becoming overly sensitive to the (relatively low) acceleration
at high speeds. Note that we approximated the distributions
using a multivariate normal, but that speed generally follows
a multimodal distribution. However, our empirical data shows
that the product of the two first factors of each feature
�v · σ( j) and �b · μ(y) outweighs the speed factor and the
distribution remains approximately normal, which is sufficient
for anomaly detection purposes. Also note that the choice of
this feature set impacts the training strategy, since it benefits
from continuous updates of the distribution to the current
speed profile on unvarying trips.

2) Event Detection Performance: Figures 3a, 3b and 3c
show the performance of the different feature sets in the
three scenarios. To measure performance, we show the sever-
ity s(x) output by the MVN classifier during the experiments.
Note that to initially train our classifier, we drove 25 km
around the test track, in different modes of driving (aggressive,
normal and calm). The zones where the driver performed risky
maneuvers are highlighted in red in Fig 3. In general, we can
observe that FS2 and FS3 provide a more accurate severity
output during such maneuvers. Also, during the calm driving
phases (i.e., those without red highlight), FS3 provides fewer
false positives, not triggering any high severity during calm
driving.

C. Training Strategy and Hyperparameters

1) Model Update Frequency: In order to improve the per-
formance of the model, it is important to set up the correct
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Fig. 3. Detection performance: Severities computed from different feature
sets on a labelled dataset. (a) Acceleration, braking and steering. (b) Slalom.
(c) U-turns.

training rates, i.e., how often the model is re-estimated and
how many samples are drawn from the current model and
combined with the new observations. In the following, we
show the performance of the maneuver detection by consid-
ering a sensitivity analysis of the training parameters. For
this analysis, we consider the second data set, consisting

Fig. 4. Event detection recall. (a) Recall wrt. n and r . (b) Recall wrt. ulim .

of 30 risky driving maneuvers on public roads. We replayed the
complete data set offline, considering a variable number of new
samples (n) and a variable number of samples drawn from the
previous distribution (r ), both varying between 100 and 3,000,
with a step of 100, producing 900 total combinations. The
main objective of this analysis is to estimate the performance
of the event detection over the whole data set for the different
combinations of n and r , and to determine optimal values for
those parameters. As the performance metric, we consider the
proportion of samples with non-zero severity (s(x) > 0) falling
between the start and end time of an event, i.e. the recall of
the classifier. Fig. 4a shows the results of this analysis as a
heatmap. Based on Fig. 4a, we observe that the performance
of the classifier degrades with a low number of new samples,
(i.e., n < 700). We can see that the best training strategy
makes use of a mixture of both the previous distribution
samples and new observations. We can also infer that there is a
trade-off between the update frequency and the performance of
the classifier. A very frequent update rule degrades the perfor-
mance of the classifier, since it is very likely that the samples
generated during this short retrain phase are insufficiently
representative of the driving style. A lower update frequency,
on the other hand, may not react to sudden changes in the
scenario and lead to wrong classification. For the remainder
of the analysis, we use n = 1200 and r = 2900, since they
provide the best classification recall.

2) Model Update Criterion: In the previous analysis, we
computed the performance of the classifier for different com-
binations of r and n by always using a simple update rule,
which unconditionally triggers an update of the model every
n samples. However, in some cases, these newly collected
samples may not be representative of typical driving behavior,
e.g. during constant-speed driving in a straight line on a
highway. Since such low-variance data sets may bias the
model, we added a criterion to detect and potentially reject
them, and thus selectively update the model. As described
in Section III-B, we introduce u as the quotient between
the determinant of the covariance matrix of the new data
samples and the determinant of the covariance matrix of the
previously computed model. This is a relative measure of
the variance of the new data with respect to the data that
has served to build the current model. Fig. 4b illustrates the
performance of the classifier for different values of ulim . The
additional criterion updates the model only if u ≥ ulim .
We observe that the maximum performance obtained in the
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Fig. 5. Risky driving maneuvers in the feature space, different maneuvers on the same model (axes scaled). (a) Acceleration and braking. (b) Slalom.
(c) U-turn.

results presented in Fig. 4a (which sets ulim = 0) can be
improved by increasing ulim . We observe the best performance
for 0.5 < ulim < 0.9, which implies updating the model only
if the variance of the new data set is greater than at least half
the variance of the previously computed model. We base our
analysis on ulim = 0.6, where we have observed optimum
recall.

D. Maneuver Riskiness Based on Severity

So far, we have identified the parameters of the proposed
driving maneuver detection. For many applications, it is sen-
sible to provide a metric that describes the level of riskiness
of a certain maneuver for driving scores or the computation
of profiles. Based on the severity metric, we can express
how anomalous a observation x is with respect to the current
model. However, in order to analyze riskiness, we need to
explore how the consecutive observations corresponding to an
event evolve in the two-dimensional feature space over time.
Using the severity metric s(x) defined above, together with the
Mahalanobis distance (see Eq. 6), we derive the risk function
of Eq. 8.

R(x) := s(x)

2

(
1 − cos α

2
+ 2

π
atan

(
Dm (xi, xi−1)

))
(8)

The definition of Eq. 8 is motivated by the idea that large vari-
ations in the feature space during an anomaly should be more
strongly penalized. Regular anomalies manifest themselves as
a temporal cluster of similar values, whereas more extreme
maneuvers display more variability and cover larger distances
within the feature space, so the angle between consecutive
samples and/or the distance between them are large. In order
to create a normalized risk metric in [0, 1], we normalize the
arctangent of the Mahalanobis distance and also evaluate the
Haversine function of the relative angle α between consecutive
samples (xi−1, xi) in the feature space. These values represent
the similarity of two consecutive samples and are weighted
using our severity metric (s(x)). Thus, the risk function reflects
the trajectory of the anomaly within the feature space.

The risk function is accumulated over a trip and can
serve as a basis for driver scoring. Using this metric, risky

maneuvers of a longer duration are more comparable to short
maneuvers (e.g. sudden lane changes), as similar consecutive
samples’ risk values are attenuated by the distance and angle
coefficient. Fig. 5 illustrates a set of example risky maneuvers
extracted from the baseline events recorded at the test track.
We show the MVN model in a heatmap representation and a
sequence of consecutive observations connected with arrows.
Note that the figures have different scales but show the same
model, and that the observations x are represented by white
dots of size proportional to their risk function value R(x).
We consider maneuvers with variance in both dimensions
(e.g. steering while accelerating) to represent a greater risk
than the elementary maneuvers in one dimension (e.g. just
steering). The slalom trace shows that the risk function ampli-
fies abrupt changes in the features. The U-turn trace shows
that the risk function value is high for the first observations,
which are considered to be anomalies, and that the subsequent
anomalies give lower risk values, as they are similar and
belong to the same driving event. Overall, this shows that
the risk function allows an adequate evaluation the risk of
individual maneuvers.

V. LARGE-SCALE EVALUATION

A. Implementation and Deployment

The MVN classifier and scoring function were integrated
into a publicly available Android and iOS application in
close partnership with a local car insurance company. The
application allows individual drivers to detect driving events
and submit their trips to a server for score computation.
A gamification layer, including a variety of badges and social
network interactions, was added in order to encourage drivers
to contribute to the platform. In the mobile application, an
MVN model is built and retrained on each mobile device.
Users record their driving and use the MVN model to classify
driving events, as described in Section III. The output of
the MVN classifier is sent to a remote server at the end of
each trip. The server then calculates a drive score based on
the density of MVN events, i.e., the ratio between the risk
computed using Eq. 8 and the distance driven. Trips with neg-
ligible risk density (lower than a constant minimum threshold)
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Fig. 6. Evolution of average score.

are assigned a drive score of 100 points drive score. Drive
score linearly decreases (down to zero) with increasing risk
density. This drive score is then adjusted using a variety
of contextual information, including historical weather and
daylight information in order to more heavily penalize events
occurring in bad environmental conditions. For every trip
recorded, the driver gets a number of game points that are
accumulated for each trip. The number of game points on
each trip is proportional to the drive score, the distance driven
and the frequency of usage of the application.

B. Collected Evaluation Dataset

Launched in early March 2015, the application collected,
during the first four months, more than 150,000 individual trips
covering 2,800,000 kilometers from 4,800 distinct drivers.
Using our MVN model, we detected more than 600,000 risky
maneuvers and computed around 280,000 model updates.

As a result, after 120 days of usage of the application, we
were able to observe the evolution of the average score for
the whole community of users. In Fig. 6, the average score
calculated over the total number of users is shown for the first
120 days of the data collection campaign. We can observe
that the average score improves roughly linearly over time.
We attribute this score shift to users’ behavior changes trig-
gered by the gamified application and users’ motivation to
improve their scores (cf. sec.V-D).

C. Model Adaptation

As explained in Section IV-C, the MVN classifier is updated
frequently in order to adapt to changes in the environment.
One of the goals of the retrain phase is to let the MVN
model adapt to different road conditions. As may be expected,
lateral and longitudinal movements when driving in residential
areas are different from those when driving on primary or
secondary national roads. In order to illustrate the effect of
different road conditions on the model, Fig. 7a shows the
average determinant of the co-variance matrix of the current
model, det (�r ), depending on the road type. In order to obtain
road type information, we looked up OpenStreetMap (OSM)
road classes for every location that corresponds to each model
update. We then associated the corresponding road class to the
MVN model determinant. Fig. 7a shows that the determinant
of the co-variance matrix of the MVN models computed on
residential roads is around four times higher than that observed
on primary and secondary roads, where driving is smoother,

Fig. 7. Model covariance determinant wrt. context and devices. (a) det vs.
type of roads. (b) det for iPhone6 and GS5.

without extreme cornering maneuvers. Also, building a unique
model on each enrolled device mitigates the effect of having
different sampling rates and resolutions for motion sensors
and GPS. Hence we can expect different sensing data quality
from different device brands and models. This is observed
in Fig. 7b, which shows the determinants of iPhone 6 and
Samsung Galaxy S5 (SM-G900F) using box-plots. We observe
much larger dispersion and higher median determinant for the
Samsung Galaxy S5 compared to iPhone 6.

D. Score Reliability

1) Survey-Based Score Evaluation: In order to validate the
reliability of the computed scores, we conducted an online
survey of our community of users. It consisted of a set of
questions designed to identify users’ subjective opinions of
their own driving. We obtained 52 sets of answers from active
users and ran analysis of variance (ANOVA) tests on the
results with respect to the participants’ mean scores. The
analysis yielded significant mean differences of scores between
respondents on the question on subjective driving style. Fig. 8a
shows the dispersion of score values for users who declare
themselves in the survey to be either calm or aggressive
drivers. The analysis of variance between these two groups
rejects the null hypothesis, showing that there is evidence
that the expected scores in both categories (i.e., calm and
aggressive) differ. The p-value for the test was 0.0154.

Further, ANOVA indicated significant interaction between
two survey questions: whether users think their driving behav-
ior changed and how often they used the application. Fig. 8b
shows the interaction between the answers to these two
questions and the mean score of the groups. We can observe
that users who declared an improvement in their driving and
used the application frequently achieved the best mean scores,
reflecting that the driver profiles were able to capture the
improvement in driving style (which could also be observed
earlier in Fig. 6). This also supports the idea that gamifi-
cation can improve user behavior given frequent use of the
application.

Additionally, we asked whether the planned introduction
of speed radars was likely going to affect the respondent’s
driving. This question intends to differentiate between calm
and aggressive drivers in terms of speeding: a driver declaring
that the introduction of speed radars will affect his driving
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Fig. 8. Score evaluation using survey results. (a) Subjective driving style estimation and corresponding score. (b) Interaction between application use frequency
and subjective driving improvement w.r.t. scores. (c) Propensity for speeding and corresponding score.

TABLE II

ECO-DRIVING FACTORS AND THEIR CORRELATION TO SCORES

style implicitly accepts that he tends to occasionally exceed
speed limits. In Fig. 8c we show the relation of the computed
drive score against the propensity for exceeding speed limits.
We observe that the computed drive score tends to increase
for drivers with a low propensity for exceeding speed limits.

2) Eco-Driving Factors: Additionally, we have evaluated
the score metric of drivers against known eco-driving factors
that have been used to characterize driver behaviour and
aggressiveness in studies [17], [18]. Positive Kinetic Energy
represents the driver behavior during acceleration process,
where vi and v f indicate the speed at the beginning and end
of an acceleration phase. PKE is computed as the density
over distance d of the sum of squared speed variation during
acceleration phases. Relative Positive Acceleration models
driver’s power demand, producing high values with increasing
agressiveness and fuel efficiency. The Deceleration Factor is
simply the average deceleration value over a trip. The Extreme
Acceleration Factor evaluates how often a driver surpasses
a certain acceleration threshold (cardinality of samples with
a > 2.5m/s2) over a distance d .

For each trip in the study, we evaluated different eco-driving
factors and computed their correlation ρ to the corresponding
trip scores, shown in Table II. The score metric reflects these
different driving factors with moderate to good correlation,
and together with the results of the survey, this shows that it
is a good indicator of driver behavior.

VI. CONCLUSION AND PERSPECTIVES

In this article, we have described an MVN model to
detect risky driving maneuvers using smartphone sensors and
GPS data. Rather than detecting maneuvers based on fixed

thresholds or supervised learning methods requiring labelled
driving data, the system allows the driver style to be dynami-
cally fitted in a multivariate Gaussian model that is frequently
updated in order to adapt to changing driving conditions.
The main advantage of such a system is that the model
is computed for each individual mobile device, vehicle and
driver, avoiding any dependency on a priori training data.
Through experimentation, we have analyzed the performance
of the system in terms of maneuver detection and adaptability.
We have also proposed a metric to measure the relative
riskiness of observed maneuvers, and a strategy to avoid model
degrading through selective updates. We have implemented
and deployed our proposed model in a mobile application
and collected driving traces from more than 4,800 users. The
results confirm that the model adapts well to different road
conditions and device types. Through an extensive survey, we
confirm that the proposed scoring function accurately repre-
sents users’ perceived driving styles, with possible applications
in insurance telematics, car-pooling and ride-sharing.

In future work, we want to evaluate further parameter
estimation methods to enhance our current model, in particular
the robust Minimum Covariance Determinant and Minimum
Volume Ellipsoid estimators. Furthermore, we plan to evaluate
Multivariate Gaussian Mixture Models to account for the het-
eroscedasticity of the data by using different models depending
on the road topology and corresponding velocities.
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