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Abstract—It is intuitive that there is a causal relationship
between human mobility and signaling events in mobile phone
networks. Among these events, not only the initiation of calls
and data sessions can be used in analyses, but also handovers
between different locations that reflect mobility. In this work, we
investigate if handovers can be used as a proxy metric for flows in
the underlying road network, especially in urban environments.
More precisely, we show that characteristic profiles of handovers
within and between clusters of mobile network cells exist. We
base these profiles on models from road traffic flow theory, and
show that they can be used for traffic state estimation using
floating-car data as ground truth. The presented model can be
beneficial in areas with good mobile network coverage but low
road traffic counting infrastructure, e.g. in developing countries,
but also serve as an additional predictor for existing traffic state
monitoring systems.

I. INTRODUCTION

Mobile data is becoming increasingly popular as a research
topic, as mobile network operators (MNOs) are looking for
novel applications of their data. With Internet-of-Things (IoT)
devices, connected vehicles and innovations in radio access
technologies, the data available to MNOs is getting richer.
Its spatio-temporal resolution is growing as the locations of
users are known more frequently because of increased mobile
connectivity, and with higher precision due to the decrease in
cell size of recent radio access technologies. The types of data
that are readily available to MNOs which are commonly used
for data analytics are Call Detail Records and Signaling Data.

Call Detail Records (CDRs) are the most popular type of
mobile data used for analysis. CDR entries describe single
transactions of a user equipment on the mobile network, e.g.
the initiation of a call or data session, or the transmission
of a text message (SMS). They are easily extracted from
the MNO’s billing systems and are routinely evaluated by
MNOs. However, there are privacy concerns with CDR data,
as individual users can be identified from a large set of
users based on the frequented locations and spatio-temporal
patterns present in the data, as demonstrated by De Montjoye
et al. [1]. CDR data contains only a single, initial location
information per activity (call/SMS/data transmission), which
can be a limiting factor in some studies.

Signaling Data is a different kind of mobile data. It consists
of meta-data from the mobile network infrastructure that is
generated e.g. if a user initiates a call or moves from one
antenna to another (a so-called handover). This kind of data
is related to the operation of the mobile network. Unlike CDR,
signaling data can include information on a user’s precise
movement trajectory within the mobile network during an
active connection (in the so-called active mode). In the absence

of an active connection, the location of a user is known to
the network only at Location-Area (LA) level, i.e. a set of
cells covering a large area. In aggregated form, data regarding
handovers can serve as a privacy-neutral way of assessing
mobility, in the form of counts or the distribution of time
spent within a cell (cell dwell time).

In this vein, we want to make use of mobile network
signaling data in order to estimate the road traffic state in an
urban context. More precisely, we want to show the correlation
between road traffic and mobile network handovers, to enable
using the mobile network infrastructure as a distributed traffic
sensor. For this purpose, it is necessary to deal with the
restriction that mobile signaling data includes stationary and
pedestrian users, while traditional traffic detectors (e.g. loop
detectors and floating car data) only include vehicles. Hence,
part of the contribution in this paper will lie in the vehicular
density estimation from aggregate signaling data. This is a
privacy-neutral and almost cost-neutral model, that can serve
as an additional input to existing traffic state monitoring sys-
tems, or stand-alone for areas with sufficient mobile network
coverage but little road traffic counting infrastructure – in
particular developing countries.

II. RELATED WORK

A. Mobile Data Analytics in Transportation

1) CDR-Based Analysis: There are several examples of
making use of CDR data for estimating the demand in the
underlying transportation networks. Iqbal et al. propose a
method for estimating OD matrices from CDR data and traffic
counts jointly, using trip patterns from the mobile phone data
and traffic data as ground truth [2]. They scale the CDR-
based demand to the loop detector data using MITSIMLab,
a microscopic simulator, in order to obtain realistic OD-flows.

Di Donna et al. have shown in [3] that demand can be
estimated from CDR data by means of a Markov chain of
user movements between clusters of antennas obtained using
k-Means clustering. They show that the change in transition
matrices is slow and their results indicate strong spatial
demand similarity across multiple days of studied data.

In [4], Gundlegård et al. propose a full methodology for
going from CDR data to OD matrices, separating the demand
and route choice model estimation. They propose algorithms
for estimating the temporal distribution of demand, route
choices as well as travel time estimation and suggest how to
implement mode choice models.

2) Signaling Data Studies: Various studies have been per-
formed on Location/Tracking Area Updates, which concern
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idle phones (in a disconnected state) and are useful at larger
distances, e.g. on Interstate highways.

Janecek et al. [5] have demonstrated the utility of Location
Area Codes (LACs) and handovers to detect congestion on
a highway case study. In particular, they monitor the fastest
cell-switches of users under the assumption that they represent
vehicular mobility. They use the LAC updates from idle mobile
phones to detect traffic slow-downs, and then use handovers of
active, connected phones to more precisely locate the source
of congestion. They also show that mobile signaling data can
be among the fastest ways of detecting highway congestion.

Bar-Gera evaluated the predictive power of cell dwell times,
using a system that logs handovers of phones that are in-call
(i.e. in active mode) and the handover time stamps [6]. The
case study focused on the Ayalon freeway in Israel, and the
author shows the strong correlation between travel times and
speeds estimated from the mobile phone dwell times and those
measured using loop detectors.

Hui et al. have investigated inter-city travel volumes using
signaling data, inferring the modal split (road and air travel) of
users moving between Calgary and Edmonton [7]. This shows
that for large distances, passive mode data on Location Areas
can be a valuable source for mobility studies.

The aforementioned studies on LAC updates and handovers
primarily concern highways and long distance travel. To the
best of our knowledge, there are no studies on the relationship
between handovers of mobile phones in active mode and traffic
states in urban environments. In a previous simulation study,
we have shown that characteristic profiles of flow and density
exist in mobile cell clusters, and that their behavior correlates
with the underlying road network [8]. In this work, we want
to confirm these findings using real data. The resulting model
can be beneficial for real-world applications. It can be applied
in areas where there is little traffic counting infrastructure,
but sufficient mobile network coverage, e.g. in developing
countries. It can also be used for anomaly detection in the
relative states of road and mobile networks. Since we want to
establish a link between mobile data and traffic flow, we will
now present some relevant related work from the domain of
traffic flow theory.

B. Traffic Flow Theory: Macroscopic Fundamental Diagram

The Macroscopic Fundamental Diagram (MFD) describes
the distinct relationship between density and border flows of
homogeneous road network regions. In [9], Geroliminis and
Daganzo show the existence of urban macroscopic fundamen-
tal diagrams on data from Yokohama, a very homogeneous
road network with a high loop-detector coverage of 500 fixed
detectors placed 100 m upstream of intersections. They show
that the phenomenon emerges for areas greater than 10 km2.

In order to observe MFD characteristics, it is necessary
to adequately partition the road network. In [10], Ji et al.
show that the normalized-cut algorithm can be used for initial
partitioning of the network, but they also propose a method
for further improving the network partitioning with respect to
the homogeneity of the obtained clusters.

Buisson and Ladier explore the impact of homogeneity
on the variance of MFDs in [11]. They show how the loop
detector spacing and heterogeneity in road types impact both
the shape and scatter of the resulting MFDs. They conclude
that link similarity, regular data collection and comparable
congestion patterns are the key attributes of zones that exhibit
low-scatter MFDs. These results are relevant to our work as
they help explain some of the behavior we will observe in the
road network partitions in this study.

III. DATASETS

A. Mobile Network Signaling Dataset

1) Description: The mobile dataset contains aggregate data
from 1839 3G (UMTS) cells within the country of Luxem-
bourg, 611 of which are located in and around its capital,
Luxembourg City, the region relevant to this study. More
specifically, the data consists of:
• the number of handovers between cell pairs per hour
• the number of calls initiated from each cell per hour

The motivation behind choosing these two metrics was to be
able to approximate flows and density from them. The data
was made available for a whole week at the end of September
2016. We organize the handovers in a handover matrix, i.e. the
weighted, directional adjacency matrix of 3G cells in the study
area summed over the data of Monday, in order to identify the
amount of flows between cells across a single typical workday.

2) Clustering: We want to consider internal and exiting
handovers for different partitions of the mobile network, and
thus have to partition it into mobile cell clusters.

Ji et al. have shown in [10] that partitioning by normalized
graph cuts is a valid starting point for finding homogeneous
road network partitions. Spectral clustering is a relaxation of
the normalized graph cuts algorithm, and has proven effective
for clustering the mobile network in a previous study [8] that
we performed on simulated handover data.

Thus, in this work, we apply spectral clustering to the
handover matrix (i.e. the weighted adjacency matrix) of the
mobile network cells. The weights in the matrix correspond
to the number of handovers between cell pairs, and spectral
clustering allows defining the desired number of clusters of
this matrix.

Geroliminis et al. have shown the emergence of MFDs in
areas greater than 10 km2 [9]. Our study area of Luxembourg
City and its highway ring consist of 82 km2, so we opted for
8 clusters.

B. Floating-Car Dataset

1) Description: As ground truth data, we use Floating-Car
Data (FCD) collected during the same study week. This is a
set of time-stamped location updates and travel speeds which
was collected in the area of Luxembourg City and its highway
ring, and consists of 600 trips and 220000 location updates.
In particular, we are interested in traffic states, i.e. the ratio
between actually driven speeds and the speed limit ( v

vmax
).

Thus, we performed map-matching on the FCD to obtain the
values of vmax for every location update.
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Figure 1: Floating-Car Data and Mobile Network Mapping

2) Mapping FCD to the Mobile Network: In order to enable
the use of FCD for validation purposes, we need to map
the most likely associated mobile network cell to each GPS
location entry.

Fig. 1 shows an example of the method we used: First, we
can easily find each location entry’s nearest base station (BTS)
by distance. In the example, that is BTS1 for the first three
floating car beacons, and BTS2 for the next three. Usually, a
BTS hosts a set of mobile network cells emitting into different
directions, e.g. cells 1, 2 and 3 for the first part of the trajectory
and cells 4 and 5 for the second part.

From an FCD trajectory, we can thus identify a sequence
of these sets of potentially associated cells corresponding to
the taken road path. Now, in order to identify the single, most
likely visited cell sequence, we use the handover matrix. We
choose the most frequent cell transition to be the likely cell
pair visited, thus building a chain of visited cells over the
entire trip. In the example above, the most likely cell transition
(handover) is 3 → 5, because there are the most handovers
between these two cells. Thus, we pick these two cells as the
most likely occurred sequence.

Using this method, we get a single likely associated cell
for each Floating-Car Data entry, i.e. the cell that the driver’s
phone was most likely connected to at their current location.
This allows to compute road traffic statistics relative to the
connected cell.

Finally, in order to compute the traffic state variable, i.e.
the ratio between the actual observed link speeds and their
respective speed limits, we perform map-matching of the
Floating-Car Data entries to the OpenStreetMap road network
(to obtain the speed limit at each entry).

C. Merging FCD and Mobile Datasets into Training and
Validation Sets

1) Training Set: We build a training set with the road
network traffic state (the response variable) as well as each
cluster’s hourly statistics and profile function parameters and
derivative (as introduced in the following section). Using
this training set, we can then estimate a global equation for
all clusters linking the inputs to the traffic state. Thus, we
construct the following training dataset using FCD and mobile
network data from Monday through Wednesday of the study
week:

For each FCD entry we have computed the current traffic
state variable and most likely associated cell, mapping to a
mobile network cluster as defined by the spectral clustering
of the handover matrix. Thus, we have a mapping of each
FCD entry to its respective mobile network cluster, i.e. we can
associate the response variable (traffic state) to the predictors
(mobile network statistics). Among these predictors, there are
aggregate handover statistics between and within cell clusters.
By the term internal handovers, we understand handovers
between cells belonging to the same cluster, while exiting
handovers describe those leaving the cluster.

To summarize, for each cluster and hour, we compute:
• entering, internal and exiting handovers
• aggregate amount of calls emitted from this cluster
• fit parameters of the profile function
• the derivative of the profile function
• the average traffic state ( v

vmax
)

Using these features, we can then evaluate our approach:
We study whether the aggregate mobile network statistics and
the previously learned profile functions (as described in the
following section) can serve as sufficient predictors for the
underlying road network traffic state.

2) Validation Set: The validation dataset consists of FCD
data and mobile network data of Thursday and Friday. The
values for the profile function coefficients are adopted as
learned from the training dataset, representing the learned
profiles from past observations.

IV. CORRELATION BETWEEN MOBILE AND ROAD
NETWORKS

We evaluate the predictive power of mobile network signal-
ing data using Floating-Car Data as ground truth. In particular,
we estimate for each road network partition the traffic state
variable, i.e. the ratio between the actual observed link speeds
and their respective speed limits.

We want to identify if there are profile functions of the
mobility inside and between mobile network cell clusters,
analogous to the Macroscopic Fundamental Diagrams (MFD)
in road networks. The MFD describes the relationship between
outgoing flows and internal density of vehicles in a homoge-
neous partition of a road network.

Similarly, we want to make use of exiting and internal han-
dovers of mobile cell clusters to build such profile functions
for mobile cell clusters. Their relationship can be summarized
in a profile function, which is analogous to an MFD in the road
network, but based on mobile network signaling data. We then
want to use these profile functions estimate the current degree
of saturation of the underlying road network, if more or fewer
handovers happen within clusters or across their boundaries.

Concretely, these profile functions are modelled as quadratic
polynomials. They express the relationship between flows
exiting a cluster and the density within the cluster, which we
approximate using inner-cluster flows and the number of calls
initiated within the cluster.

As with the MFD, velocity can then be expressed by the
ratio of outflows to density, which are approximated from the
mobile data (cf. following subsections). In further analogy
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to an MFD, the derivative of the profile function should be
positively correlated to the velocity inside the cluster, as it
assumes positive values in low density/high velocity situations,
and decreases as density increases/velocity decreases.

A. Proxy Function for Vehicle Density from Mobile Data

In order to model the relationship between flows exiting
a cluster and the velocity within the cluster, it is necessary
to estimate the density inside the cluster. For this purpose,
we estimate the parameters of a function connecting internal
(within-cluster) flows and calls emitted from inside the cluster.
The motivation behind this is that a higher density of vehicles
will lead to an increase of the within-cluster handover count
(qinner). Also, more people and vehicles within an area lead to
more call initiations. Hence, we chose to express our density
proxy through a product of these two metrics weighted by the
exponents θQ and θC , respectively:

k̃ (qinner, ncalls) := qinner
θQ × ncallsθC (1)

Further, we can then get a proxy function for velocity
estimation according to Greenshields’ linear speed-density
relationship model [12]:

ṽ (qexiting, qinner, ncalls) :=
qexiting

k̃ (qinner, ncalls)
(2)

We have performed optimization on this function with
respect to the training dataset. More precisely, we ran a
hill-climbing algorithm to maximize –for each cluster– the
correlation between the true traffic states and the velocity
proxy function. Further, we introduced another parameter by
adding an exponent (θM ) to the handover matrix that we
use as an input for the spectral clustering. The goal is to
obtain balanced clusters for which the correlations above hold
particularly well. The parameter basically allows transforming
the adjacency (handover) matrix such that spectral clustering
considers more or fewer cuts as transitions are rendered less
(θM > 1) or more (θM < 1) similar.

B. Profile Functions

Following the ideas above, we estimate the coefficients
a, b, c of a quadratic fit to the relationship between qexiting
and k̃ for each of the clusters:

p(k̃) = ak̃2 + bk̃ + c (3)

Depending on the approximate density k̃ at a given moment,
we can evaluate the derivative of the profile, which should
correlate positively with the traffic state inside the cluster:

p′ =
dp

dk̃
= 2ak̃ + b (4)

We have now introduced all the functions that are necessary
to proceed with our analysis and to compute correlations
between the true traffic states and ṽ and p′, respectively.

Figure 2: The road coverage of the 8 mobile network clusters
as generated with spectral clustering for this study.

C. Parameter Optimization Results

The parameters resulting from the hill-climbing optimizer
are θQ = 2.36, θC = −0.36 and θM = 0.059. This means that
the density approximation function (k̃) is primarily influenced
by the within-cluster flows, but balanced by the amount of
calls at roughly the cubic root. This likely reduces density
overestimation in urban/business districts where a relatively
large number of calls are initiated in comparison to suburban
or highway environments. The low exponent for the handover
matrix (θM ) indicates that the matrix is flattened, allowing a
larger set of cuts to be taken into consideration by the spectral
clustering algorithm.

The optimum solution with θM = 0.059 resulted in the
clustering shown in Fig. 2. On this map, we plot Floating-
Car data points colored by their associated mobile network
cell cluster, according to the mapping procedure explained
previously in Fig. 1. In terms of coverage areas, the clustering
appears to be balanced, and the clusters are mostly cohesive.
There are some small incohesive areas, which are due to the
proximity-based approach taken during the mapping process.

D. Correlation Results

We computed the Pearson correlation coefficient between
the traffic state with ṽ and p′ for each cluster. Table I shows the
resulting correlation values for the validation set. We observe
that the resulting values are in the medium-high range for the
majority of clusters. They are weak for clusters 3 and 4, which
are situated in the uptown and business districts, which could
be due to differences in the distribution of placed calls and
within-cluster flows, as these clusters contain more stationary
users during business hours. Hence, the single equation we
have established for density estimation might not hold for these
two clusters specifically. Also, the clusters might simply be too
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Cluster Area r(ṽ) r(p′)

1 Hesperange, Ring: A3 LU ↔ FR 0.33 0.49
2 Ring: A6 LU ↔ BE 0.60 0.45
3 Limpertsberg, uptown 0.10 -0.04
4 Kirchberg -0.08 -0.22
5 Cessange, Gasperich 0.51 0.58
6 Train station, downtown 0.52 0.29
7 Ring: A1 LU ↔ GER 0.65 0.54
8 Ring: A4 LU ↔ Esch/Alz. 0.59 0.7

Table I: Pearson correlation coefficients by cluster: Traffic state
vs. velocity proxy and derivative of the profile function

small and/or heterogeneous to reliably estimate density using
our method.

Given the relatively low resolution both in time and space,
the error in FCD ↔ handover mapping and the very hetero-
geneous base station placement (in comparison to e.g. loop
detectors), these results are very encouraging, in particular
for the highway ring clusters. While these correlation values
are insufficient as stand-alone predictors of traffic states, they
can serve among others in a regression model, which we will
discuss in the following section.

Fig. 3 shows results for three different clusters. The blue
cluster (7) is a cluster that consists primarily of data from
the A1 highway, a part of the ring around Luxembourg City.
The red cluster (5) is a heterogeneous cluster that consists
both of highway on-/offramp and urban data, specifically the
Gasperich-Cessange area in the south of Luxembourg City and
the A3 and A4 highway onramps and exits. Finally, the green
cluster (6) corresponds to an urban cluster, more specifically
the train station and old town areas.

The first line shows a set of plots corresponding to the
profile functions computed, relating outflows to the approxi-
mated density. We observe low residuals against the quadratic
regression line for the urban and highway clusters (green and
blue), and larger variance on the mixed cluster (red), which
is likely due to its mixed road types, matching the findings of
Buisson et al. [11].

The second line shows plots of the distributions of the true
traffic states (as measured with the Floating-Car Data) and the
estimated proxy function of velocity (ṽ). We can observe that
the highway and mixed clusters correlate better than the urban
cluster.

The plots show that the highway clusters are better repre-
sented by the model than urban clusters. Likely, the profile
function captures the highway’s fundamental diagram func-
tion, while the urban areas are quite heterogeneous and more
difficult to estimate. Also, our approach of fitting a single
density-estimation function to all clusters fails to capture the
dynamics of all cluster types. Hence, we propose to go beyond
this work in the future, by fitting different parameters to
different cluster types.

V. ROAD TRAFFIC STATE REGRESSION

We want to find a single regression equation that uses the
(previously trained) profile functions of mobile cell clusters,
along with each cluster’s handover and call counts, to estimate
the road traffic states. If that is possible, then we have

sufficiently characterized the mobility inside the clusters, as
the same distinct regressive relation holds for all clusters.

A. Regression Results

In order to test the adequacy of mobile phone MFDs to
represent the full spectrum of road traffic states, we fit a
single linear regression model to all the clusters. This will
yield good prediction accuracy across all clusters only if the
information in the fitted profile functions can explain the traffic
state variance sufficiently well.

As described above, we train our profile functions of each
clusters on the data from Monday through Wednesday, and
evaluate them on data of Thursday and Friday.

Fig. 4 shows the scatter between estimated and actual traffic
states for the Thursday and Friday data. Individual points
represent a clusters’ mean traffic state during an hourly time
slot. The green line is the identity line, while the blue line
represents the regression trend between prediction and true
values. The proximity of both lines indicates a good fit. The
mean absolute percentage error (MAPE) amounts to 12.0%,
which – given the constraints of our data sets – shows that
mobile network data can be used for estimating road network
traffic conditions. The low count of traffic state values < 0.5
has a negative impact on the prediction for low values, which
can likely be remedied with more training data with sufficient
congestion.
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Figure 4: Regression results of traffic states on the validation
set

B. Limitations and Possible Extensions

The main limitation of this work is the temporal aggregation
of the mobile phone data set (1 hour granularity). However,
we believe that the results above are sufficiently good to
show that traffic state estimation is feasible using only mobile
phone data. In particular, there is room for improvement of
the predictions, using more fine-grained data, a longer training
period and multiple radio technologies (2G, 3G and 4G).

Another limitation is the low degree of congestion in the
data, which prevents us from directly comparing our profile
functions to other models. Generally speaking, the functions
follow the free-flow and sweet-spot parts of a Macroscopic
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Figure 3: Clusters 7, 5 and 6: Profile functions, correlation between traffic states and velocity proxy (only validation dataset
used). Colors match those in Fig. 2.

Fundamental Diagram (MFD), as known from traffic flow
theory [9]. However, for a lack of very severe congestion in the
road network, we do not observe the negative slope of the flow
ratio characteristic of grid-lock and spill-back phenomena, but
this is in line with studies on traffic data from other cities [11].

The results show that for the clusters containing a large
percentage of mobile users, the presented data set is sufficient
for traffic state prediction. The limitation of not knowing the
proportion of stationary and pedestrian users is problematic in
the business districts, and remains a drawback in comparison
with more traditional traffic sensing technologies. This could
be remedied with cell dwell time metrics. However, we are
confident that the presented method works suitably well for
the districts with higher vehicle/user ratios.

VI. CONCLUSION AND FUTURE WORK

We have shown that profile functions of partitions of mobile
networks exist, and that they exhibit predictive power for
estimating the road network traffic state. Future work consists
in evaluating whether or not these profile functions and Macro-
scopic Fundamental Diagrams (MFD) possess a theoretical
link, and if that link holds for extreme congestion conditions,
i.e. grid-lock. This could be studied further in a simulation
setting. We made a first step in this direction with our work
in [8], but a more extensive study and comparison to MFDs
is necessary.

We have shown the feasibility of traffic state estimation
using a common density proxy function along with a single
regression model for highway and mixed clusters. While we
showed that this works for the highway and transit clusters,
the density function proved to be unfitting for the purely urban
clusters. Therefore, we believe that fitting multiple density
proxy function dependent on the cluster’s road topology will
improve density and velocity estimation. This will be the
subject of a follow-up study.

As mentioned above, there are various extensions and
directions for future work regarding the results we found. We
believe that by using multiple radio technologies and finer-
grained data can lead to better models of the underlying topol-
ogy. Further improvements can be expected from improved
clustering algorithms of the mobile network that lead to more
homogeneous road network partitions.

The goal of this work was to get a single regression equation
mapping to all the clusters, in order to show that mobile
network clusters have characteristic profiles with predictive
power. We have shown that this is indeed possible, and have
reached a MAPE of 12.0% with respect to the true traffic
states. It is possible to improve the resulting error by using
fixed temporal effects for the typical daily road patterns, more
radio access technologies and longer periods of data. Finally,
comparing mobile network profile functions directly to the
underlying road network fundamental diagrams would be a
helpful next step, because this would tighten the theoretical
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link between both domains.
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