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Abstract
Recent technological advances and the ever-greater developments in sensing and computing continue to provide new
ways of understanding our daily mobility. Smart devices such as smartphones or smartwatches can, for instance, provide
an enhanced user experience based on different sets of built-in sensors that follow every user action and identify its envi-
ronment. Monitoring solutions such as these, which are becoming more and more common, allows us to assess human
behavior and movement at different levels. In this article, extended from previous work, we focus on the concept of
human mobility and explore how we can exploit a dataset collected opportunistically from multiple participants. In par-
ticular, we study how the different sensor groups present in most commercial smart devices can be used to deliver
mobility information and patterns. In addition to traditional motion sensors that are obviously important in this field, we
are also exploring data from physiological and environmental sensors, including new ways of displaying, understanding,
and analyzing data. Furthermore, we detail the need to use methods that respect the privacy of users and investigate the
possibilities offered by network traces, including Wi-Fi and Bluetooth communication technologies. We finally offer a
mobility assistant that can represent different user characteristics anonymously, based on a combination of Wi-Fi, activity
data, and graph theory.
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Introduction

The rapid emergence of new technologies and the con-
tinuing expansion of networks, both fixed and mobile,
promise new possibilities for understanding human
behavior. Whether in smartphones, smartwatches, or
specialized equipment, the miniaturization of sensors
and the popularity of these devices allow both industry
and science to propose valuable new models, concepts,
and prototypes. This network of sensors, also consid-
ered as a set of sensing systems, has the potential to be
used in areas such as health, sports, and general user
monitoring.

More specifically, issues related to human mobility
and transportation systems are very well adapted to
this type of system. If issues related to navigation, traf-
fic flow optimization, fleet management, or

autonomous driving are hot topics, then user-centric
systems and the possibilities they offer are a foundation
we need to understand. User preferences and habits are
indeed essential elements that significantly enhance the
user experience. In this context, sensing systems such as
those we explore here are ideal candidates.

In this article, we study the ways in which sensors
built into smartphones and smartwatches (two of the
most popular devices of the moment) can be used to
analyze and characterize the mobility of their users.
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To do this, we begin by describing in section
‘‘Methodology’’ a data collection that we conducted
with 13 participants using the SWIPE open-source sys-
tem. In section ‘‘Exploring sensor categories,’’ we go on
to study different sensor groups to investigate the
advantages and disadvantages they may provide when
studying user mobility: (1) motion detection, (2) phy-
siological, and (3) environmental monitoring. The aim
of this study is to use sensors and combinations of sen-
sors not commonly used in similar works or in mobility
studies, which in most cases only use accelerometers
and user inputs. Using both graph theory and network
traces as explained in section ‘‘Using graph theory as a
way to understand user mobility,’’ we propose a new
way to describe and visualize the mobility of an indi-
vidual in section ‘‘Extracting mobility profiles and pre-
ferences.’’ We then propose an application that
implements this mobility profile and we evaluate it in
section ‘‘Development and evaluation of a mobility
assistant.’’ We finally introduce a discussion about
using Bluetooth technology, concluding in sections
‘‘Additional metrics: the case of Bluetooth’’ and
‘‘Conclusion,’’ respectively. This work can be used as
input and background for future studies or prototypes
that target the user experience.

Note that this article is an extension of an article pre-
viously presented at the 7th International Conference
on Information and Communication Technology
Convergence (ICTC 2016)—Faye and Engel.1 Apart
from the addition of more detailed and up-to-date
results and conclusions, this extension also offers new
perspectives and elements, such as the use of new radio
technologies, use-cases, and developments.

Methodology

In this section, we define a methodology to obtain user
data in motion. We used the SWIPE open-source plat-
form, which is available online under an MIT license

(http://github.com/sfaye/SWIPE). As part of this arti-
cle, we make another platform available (http://swipe-
e1.sfaye.com) to analyze and show a part of the dataset
presented below in anonymized form.

Sensing system architecture and metrics

The use of smart devices as key elements in an activity
monitoring platform has been discussed for many years,
in both industrial and research communities—Lane et
al.2 Apart from smartphones, devices such as smart-
watches and smartglasses have their place in this ecosys-
tem and can open up new perspectives. By combining
those devices and building a sensing system, a large
amount of data can be obtained. These data are used
since several years to interpret physical actions, social
interactions, IT environments, and so on.3–5 Interested
readers can refer to Faye et al.6 to get an overview of
existing sensing system architectures and solutions.

The sensing system we use in this article is an
Android application that collects data simultaneously
on a smartwatch and a smartphone. The architecture
of SWIPE consists of two parts, which are detailed in
Faye et al.7 First, the smartwatch (worn on the wrist)
regularly sends the data it has collected to the smart-
phone (carried in the pocket). The smartphone serves
as a local collection point and as a gateway to access
an online platform over the Internet. This platform is
composed of several modules, which (1) receive data
following an authentication process and (2) store, (3)
analyze, and (4) display it by means of a web interface.

Details of the main metrics collected are listed in
Table 1. The ‘‘recording’’ column indicates the fre-
quency at which a metric is saved, while the ‘‘sampling’’
indicates the frequency at which the system acquires
raw data from sensors. The average speed of movement
of the user’s phone and watch, called the acceleration
(or linear acceleration), is recorded every 30 s, along
with the maximum speed in order to detect sudden

Table 1. Key metrics collected by our sensing system.

Metrics Recording and
sampling rates

Comments

Maximum and average
acceleration (m � s�2)

30 s \1 s Maximum and average value of a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 + y2 + z2)

p
, where x, y, and z

are provided by the accelerometer (phone and watch).
Pedometer (steps) 60 s ~ Number of steps taken by the user, detected by the Android system as

a function of the accelerometer (phone and watch).
Heart rate (bpm) 60–300 s Heart rate, in beats per minute, provided by the optical heart rate

sensor (watch).
Ambient sound 60 s 1 s Ambient sound level, from ½0 : 100�, provided by the microphone.
Wi-Fi APs 300 s Anonymized BSSIDs of Wi-Fi access points (phone).
Bluetooth devices 120 s Anonymized BSSIDs of Bluetooth devices (phone).
Mobile network data state 300 s Value expressing the use of cell phone network (phone).
Speed (km � h�1) 60 s Travel speed provided by the GPS (phone).
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unusual gestures. Note that the linear acceleration is

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 + y2 + z2)

p
m � s�2, where x, y, and z are

the acceleration along each axis of the device, excluding
gravity. Other metrics collected by the phone include
contextual data such as microphone readings (level of
ambient noise) and network data. Further information
about the specifications of this system can be found in
Faye et al.7

Data collection

The platform detailed above allowed us to collect data,
using a smartphone (LG Nexus 5) and a smartwatch
(Samsung Galaxy Gear Live), both running Android
5.1.1. Data were collected from 13 participants working
at the University of Luxembourg in the same building
and over 13 different days. Each participant was sys-
tematically subjected to the same requirements: (1) wear
the devices for 1 day, from 10:00 to 23:59, (2) complete
an activity diary, and (3) sign an informed consent form
to accept the privacy policy of the study.

Figure 1 shows the geographical distribution of our
dataset over the 13 participants. These traces are largely
concentrated in one area—the participant’s workplace.
In most cases, the remaining traces represent commut-
ing activities or meetings in specific places.

Figure 2 shows the hourly breakdown of two types
of mobility over our dataset. The red bars represent
physical activities, while the blue bars represent activi-
ties where the user is in a motorized vehicle. Physical
and vehicular activities have been determined using the
Android activity recognition application programming
interface (API) integrated in our sensing system, and
they have been validated using the activity diaries.
Overall, we see a fair distribution of physical activities,
except in the afternoon, when, for the most part, parti-
cipants are sitting in their office. Vehicular activities
occur predominantly in the evening, when participants
return home or take part in some form of social

activity. Physical activity also appears to peak around
20:00 when some users participate in a sport.

Energy saving strategy

The provision of a sensing system launched as a back-
ground service represents a potential burden on the bat-
teries of the devices used, which are not renowned for
their longevity. As described in Faye et al.,7 it is there-
fore critical that we make every effort to save energy.
By optimizing data transmission, recording frequency,
and the devices themselves (e.g. optimizing default run-
ning services), we find an autonomy gain of about
287% for the smartwatch (13.5 h vs 4.7 h with high
transmission, harvesting, and recording frequencies)
and on the order of 189% for the smartphone (15.7 h
vs 8.3 h). Figure 3 represents the energy-expenditure
profile of the equipment used. The blue and the orange
areas show measurement points for both device—blue
for smartphones and orange for smartwatches. The
trend line in the middle of each area is a local regression
line representing the tendency of these recordings.
Overall, we see that our system can easily work for at
least 12 h, despite all the sensors being used in conjunc-
tion with the low energy capability of the smartwatch.

Figure 1. Geographical distribution of our dataset.

Figure 2. Mobility distribution of our dataset.

Figure 3. Energy-expenditure profile of the smart devices.
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For its part, the smartphone obviously has better cap-
abilities, which are, however, used quite heavily due to
its role as a relay point between the watch and the
Internet. These energy profiles give us good reason to
believe that our system will function for longer periods
of time on newer hardware with better batteries. Recent
studies performed at SnT, University of Luxembourg,
have shown that such a similar sensing system can work
for more than 20 h, whatever on a smartwatch (LG
Watch Urbane 2) or a smartphone (LG Nexus 5X).

Exploring sensor categories

Understanding human activity and mobility patterns is
a fundamental prerequisite in providing context-aware
mobility services. Traditionally, characterizing human
mobility has depended solely on data available from
cellular networks and Global Positioning System (GPS)
devices attached to the subject whose movement or
activity pattern is under study. However, the prolifera-
tion of smart devices equipped with a rich set of high-
precision sensors has caused a paradigm shift in the
provisioning of mobility- and activity recognition–
based services. Activity recognition applications make
use of these sensors to detect the physical activities the
user performs such as standing idle, walking, running,
or driving a car or bicycle. Several studies have been
conducted in these emerging research fields; interested
readers can refer to existing surveys.8,9

In this section, we describe three popular categories
of sensors in order to provide the reader with a broad
view of the relationship between mobility and sensing
systems. Relying on our dataset, we discuss and pro-
pose for each category original ways of analyzing user
mobility. The conclusions of this section will serve as
the basis for the generation of a daily mobility profile
in the next section.

Motion sensor metrics

According to the literature,3 motion sensors are among
the most used both in specific research connected with
movement detection and more general studies focused
on user travel patterns. These sensors, typically three-
axis accelerometers, can accurately trace the move-
ments made by a device. For example, in Castignani et
al.,10 the authors investigate how motion sensors can
be used to detect risky driving events and develop a
platform for monitoring driving habits. In addition to
these sensors, GPS subsystems fall into this category,
because apart from allowing positioning of an object or
user in space at a larger scale, they provide comprehen-
sive travel data (e.g. speed). The GPS sensor is the pri-
mary positioning sensor on smartphones. It determines
a device’s physical location by returning its longitude
and latitude coordinates.

Figure 4(a) provides a fundamental diagram that
identifies three main categories of mobility: still, physi-
cal, and in-vehicle activities. At a specific time, each
point of the graph conflates three values measured by
the smartphone: maximum linear acceleration, average
linear acceleration, and GPS speed. The set of points is

Figure 4. Fundamental activity diagrams: (a) smartphone and
(b) smartwatch.
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extracted from our dataset, without distinction between
users. Each point is displayed in a different color corre-
sponding to the activity the user was performing based
on data recorded at the time, validated using the activ-
ity diaries. We can see a clear trend between three types
of activity. First of all, trips made by cars or in motor-
ized vehicles (green) seem clearly independent of linear
acceleration, but are closely correlated with GPS speed
changes. Conversely, activities causing bodily energy
expenditure further stimulate the accelerometer, to a
relatively low extent when walking, becoming much
stronger when running. Between the two, inactivity
(blue) logically causes little response over the axes.

Consider the case of two users with similar profiles
in our dataset: P1 and P11. Each uses their own car for
commuting. The coefficient of variation of the speed
given by GPS is 1.27 for P1, against 0.7 for P11. This
indicates a more constant speed for P11, unlike P1, for
whom variations in speed are more frequent (due to
congestion, for example). Regarding maximum linear
acceleration, it is 0.63 for P1, against 0.71 for P11, sug-
gesting similar driving behavior.

This explains how we can easily distinguish several
classes of fundamental activities. Figure 4(b) gives us a
similar graph created with data from the smartwatch.
As users wear smartwatches on their wrists while travel-
ing, we can clearly see more information about sudden
movements, especially those made in a vehicle.

Physiological metrics

Physiological sensors can be used to capture electronic
signals from the human body. Such a signal may be
electrocardiographic (ECG) data which can be used to
infer a user’s stress and emotion level.11,12 This type of
data can serve as an indicator for capturing driving
stress experienced by users. When users are considered
collectively or as groups, this information has the
potential to identify critical geographical or temporal
points, that is, places that are perceived as dangerous
or perceived negatively by the majority of users, as
depicted in Figure 5. With this information, it would be
possible to supply a mobility monitoring system that
encourages individual users or a group of users to drive
on roads that avoid places they usually perceive
negatively.

In terms of recording on a device, it is quite difficult
to compare different absolute physiological data,
because these can vary greatly from user to user.
However, it is easy to imagine a system that measures
relative data, such as a coefficient of variation, at regu-
lar time intervals.

In the reminder of this article, we do not consider
this type of data. While physiological data seem useful
for understanding stress and other feelings experienced
by the user, it is too dependent on the hardware

(smartwatch), consumes energy, and lacks the precision
needed to provide a reliable long-term solution.

Environmental sensors

General case. The last category of sensors that can be
used to understand human mobility are environmental
sensors. Rather than measuring the actions and reac-
tions of users, environmental sensors monitor a user’s
surroundings. This category integrates sensors that
measure and monitor environmental conditions such as
ambient temperature, atmospheric pressure, and illumi-
nation. Such sensors include thermometers, barom-
eters, and light sensors.

Several other studies have been based on the use of
sensors such as microphones13 and cameras14 as a
means of automatically recognizing particular places,
or simply for identifying the context that users find
themselves in. However, the disadvantage of these sen-
sors is that they are too expensive to use effectively.
Analysis of audio traces requires microphones to record
continuously or at least for a considerable length of
time, raising privacy issues. Recording of videos is also
expensive—especially on mobile platforms where
energy is limited.

In this section, we propose the analysis of network
traces, focusing on Wi-Fi traces and their potential for
analyzing human mobility.

The case of network metrics. It is worth noting that Wi-Fi
and Bluetooth technologies can also be used as environ-
mental metrics to study mobility patterns15 and locale
characteristics.16

Figure 6 shows one of the ways that network traces
allow us to understand the movements and interactions
a person makes. These figures represent the evolution,
over the course of 1 day, of interactions between Wi-Fi
access points (APs) and between Bluetooth devices,
using a unique numerical identifier generated from

Figure 5. Stress zones in our dataset.
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their BSSID (Y axis). Figure 6 illustrates the case of
two users: P1, who does not move much when at his
workplace, and P12, who moves much more, mainly
between different meeting rooms and campuses. Both
users drive a car. The gray areas indicate when partici-
pants are commuting. We can see that both users tend
to encounter a large number of Wi-Fi APs, indicating
the spatial movements of these users throughout the
day. For example, for the first part of his day, user P1
remains in a certain place before moving to another
place around 12:00, staying there for an hour, and then
returning to the original place. User P12 appears to
have much greater mobility, visiting many more places
and staying there for less time. It is interesting to see
that when P12 goes home around 18:00, he or she con-
tinuously encounters multiple Wi-Fi networks, indicat-
ing that he or she is moving slowly. Conversely, P1
moves faster and comes across only a few networks.
Finally, both participants end their day in a place
where the Wi-Fi IDs are unknown: at home.

Bluetooth information, although less prolific, seems
to provide us with additional guidance on devices in
the vicinity. However, the scale is probably too low for
us to draw any real conclusions using this technology,
although some of P1’s traces seem to indicate that he
or she travels by public transport (moving at 18:00

surrounded by multiple devices—suggesting he or she
may be traveling on a crowded bus or train).

Sensor fusion

To illustrate the possible correlations between certain
measurements, Figure 7 shows an example of how we
can represent a large number of metrics. With partici-
pant P11 as its subject, the figure displays successively
(1) activities detected by a native Android algorithm
(ActivityRecognitionApi), (2) the user’s heart rate, (3)
the linear acceleration of the smartphone and smart-
watch, and (4) a variety of anonymized geographical
information. This figure allows us to easily understand
the different relationships between sensors and visua-
lizes the user’s main activities throughout the day. It is
interesting, for instance, to note the relationship
between linear acceleration and the detected activities.
For example, around 10:00, linear acceleration is
detected by the smartwatch alone, suggesting that the
user is stationary but moving his arm—probably at his
desk. Between 19:02 and 20:12, the user is clearly
detected as moving (GPS), but with a low linear accel-
eration over the two devices. This tends to validate the
detected activity, which is being in a motorized vehicle.
This is in contrast with the activity between 20:12 and
21:22, where the high linear acceleration suggests that
the user is running.

Using graph theory as a way to understand
user mobility

To take things further, we wanted to offer a way of
representing interactions between users and networks.
To do this, we turned to graph theory. Each device or
AP that the user scans is shown as a node. Each time
the user scans two separate devices or APs at the same

Figure 6. Network traces represented as a temporal figure:
(a) P1 and (b) P12.

Figure 7. Example of multiple sensor data representation
(P11).
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time, an edge is created between the two corresponding
nodes. The weight of each edge is simply the number of
times the user has scanned this edge. The resulting non-
directed graph provides quantitative and qualitative
information on mobility and user interactions.

The presence of Wi-Fi APs, which are usually sta-
tionary, has the potential to identify places, while
nearby Bluetooth devices can help to identify the user’s
surroundings and have the potential to detect social
interaction between device owners.

For example, Figure 8(a) represents user P12’s
Bluetooth interaction graph. The color of each node is
proportional to its degree. We can see that a large con-
nected component is present, incorporating the devices
that the user encountered when at his workplace. We
can also see other connected components, each repre-
senting a different device or group of devices that he or
she met and that never entered into interaction with
others. This may well represent an isolated meeting—a
person in the street or something similar.

A further example directly connected with user
mobility is the use of Wi-Fi networks to achieve this
type of graph. Using the principles described above,
Figure 8(b) and (c) represents the Wi-Fi interaction
graphs of P1 and P12. We can clearly see different fea-
tures. First, P1 has very distinct connected components,
including a large matching with his workplace, which
has many APs. A connected component models a
group of nodes that are connected together, but discon-
nected from the rest of the network. P12 also has large
groups of nodes; however, in this case, there are clear
links between each one, indicating slow movement
between these groups of nodes or locations. Refocusing
on graph theory, we can explore different traditional
metrics to characterize mobility differences between
these two users. Table 2 gives us an example of some of
these metrics. The number of connected components
gives an indication of the number of places visited. The

‘‘diameter’’ gives an indication of the size of the largest
connected component and on average over all con-
nected components, which can indicate whether or not
the user is physically active inside visited places. The
average degree does not give us much information.
However, the average weighted degree indicates how
much time the user spent in each place visited, because
it considers the number of times the networks were
scanned.

Extracting mobility profiles and
preferences

As we have seen, several metrics can be taken into con-
sideration, and the relationships between them can be
used to compute aggregated values such as activities or
locations. In this section, we use the conclusions arrived
in section ‘‘Exploring sensor categories’’ in order to see
how it is possible to create a representative and visual
daily mobility profile for a user.

Methodology

With knowledge of the different categories of sensors
that are easily and cheaply accessible, we can already
make a number of choices. First, as detailed in section
‘‘Motion sensor metrics,’’ the smartwatch is a good
candidate for tracing user’s movements and physical

Figure 8. Wi-Fi and Bluetooth traces represented as a non-directed graph: (a) Bluetooth—P12, (b) Wi-Fi—P1, and (c) Wi-Fi—P12.

Table 2. Graph statistics (Wi-Fi).

P1 P12

Connected components 9 7
Average diameter 1.4 1.6
Maximum connected component diameter 2 6
Average degree 45.8 42.5
Average weighted degree 403.3 109
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activities. However, it is not the most promising solu-
tion, because not everyone has a smartwatch. For this
reason, as a first step, it is desirable to provide a modu-
lar solution, which will, by default, include metrics pro-
vided exclusively by the smartphone. Then, as outlined
in section ‘‘Environmental sensors,’’ environmental
data collected by microphones or cameras would be a
good solution if it was better adapted to the equipment
we are using (i.e. if it consumed less power and disk
space). Network metrics are, however, more appropri-
ate, in particular, those provided by the combination of
Wi-Fi traces and graph theory. Finally, we must use
anonymized metrics to avoid compromising the privacy
of the user. Note that in a real-world scenario, the
smartphone can be used as a default device to compute
those metrics, while smartwatches can be used as sup-
plementary devices to improve classification accuracy.

Taking these choices into account, we want to create
a simple mobility profile, representative of different
types of mobility and which is not trivial (i.e. the user
cannot provide all or part of it by answering a few
questions, such as his favorite means of transport). The
graph theory aspects studied above seem to be ideal
candidates for this because they are easy to retrieve,
inexpensive to obtain in terms of energy (i.e. recording
frequency does not need to be high), and they are easily
generalizable to several time scales (e.g. hour, day, and
week). Thus, the profile we generate uses only a smart-
phone, recording two groups of metrics constantly and
at equal intervals: (1) anonymized (i.e. hashed) Wi-Fi
AP BSSIDs encountered by the smartphone, in order
to build for each user a graph G similar to the one pre-
sented in section ‘‘Environmental sensors’’ and (2)
activities performed by the user, only as labels (i.e.
post-computed data), with a counter registering the
number of times the user performed each activity.
Finally, a relationship is created between those two
groups by associating a Boolean with each node to
indicate whether or not the user was mostly moving
(either physically or through some form of transporta-
tion). The concrete implementation of the application
is detailed in Faye et al.17

Mobility metrics

This profile is built on top of four aspects that we con-
sider essential when profiling human mobility.

Number of visited locations. We extract this metric from
the sub-graph Gstill, which is composed only of nodes
where the user was not in motion. To represent this
metric, we suggest using the number of connected com-
ponents of Gstill.

In our case, a connected component represents a
group of Wi-Fi APs that were scanned at the same

location while the user was not in motion, or at a dis-
tance that varies depending on the communication
range of these APs. These groups are therefore ideal
candidates to represent the different places visited by
the user.

In order to validate this metric, we sought to com-
pare the values obtained for each user with the number
of places calculated using GPS data directly. For this
purpose, for each user and for all of their GPS points,
we considered a visited place to be a cluster of GPS
positions that are not separated by more than a certain
distance. Other methods exist, but we have been aiming
at achieving the simplest. As depicted in Figure 9, we
tested several distances. The best one is around 800 m,
where we found a Pearson’s correlation coefficient of
0.93, which confirms the adequacy and accuracy of this
value.

Pearson’s correlation coefficient is a classical statisti-
cal measure of the strength of a linear relationship
between two variables, giving a value between 21 and
1. Spearman’s rank correlation coefficient is a comple-
mentary measure, indicating whether the relationship
between two variables can be described using a mono-
tonic function.

Urban index. The second aspect we want to consider is
the paths between these different places. For this, we
consider the complement graph of Gstill, namely,
Gmobility, which only consists of nodes with moving
activities. Based on this graph, we extract what we call
an urban index, representing whether the environment
in which the user is moving is an urban area.

In order to find the best possible representation, we
chose to compare several metrics extracted from graph
Gmobility to ‘‘ground truth’’ reference metrics. These ref-
erence metrics are generated from two scenarios that
consider GPS traces and OpenStreetMap (OSM) data
as a basis for representing an urban environment and
its importance. The first scenario considers a GPS point
to be in an urban environment according to its

Figure 9. Correlation coefficients vs distance.

8 International Journal of Distributed Sensor Networks



proximity to residential roads (http://wiki.openstreet-
map.org/wiki/Key:highway). The second scenario con-
siders the number of buildings (http://
wiki.openstreetmap.org/wiki/Key:building). Using dif-
ferent radius parameters (from 0 to 2000 m), we arrived
at the following conclusions:

(1) As stated in Faye and Engel,1 our first results
indicated that the number of nodes present in
graph Gmobility is related to the number of resi-
dential roads within an ideal radius of 420 m.
The more a user moves around in an urban
environment, the more he or she will tend to
come across Wi-Fi APs. In this case, we find a
Pearson’s correlation coefficient (linear) of
0.74. In our current application, we consider
this metric to be representative of our urban
index.

(2) By taking the analysis further and considering
the second scenario (i.e. the presence of build-
ings), our last results at the time of writing this
article show a Spearman’s correlation coeffi-
cient (i.e. nonlinear) of 0.83. The ideal distance
used to acquire the number of buildings is
120 m. These results are obtained by using as a
metric the average diameter of the connected
components in graph Gmobility. Indeed, the wider
the diameter, the greater the density of APs
crossed by a user at a given time.

It should be noted, however, that based on the data
we have, it is difficult to quantify and qualify what an

urban environment is and how important it is. For
example, the number of residential roads around a par-
ticular location can be as important in a village as in a
large city. In the same way, two similar buildings may
contain a completely different number of Wi-Fi APs.
However, our first experiments tend to conclude that
our index is representative and valid.

Spatial exploration. Looking at the complete graph G (i.e.
Gstill +Gmobility), we compute an index showing whether
or not the user has a tendency to move inside the most
important place he or she visited. This metric has a
relationship with the number of articulation points of
the maximum connected component. The maximum
connected component is the connected component that
contains the largest number of nodes, while an articula-
tion point is a node whose removal disconnects the
component it belongs to, increasing the number of con-
nected components.

In order to validate this index, we compute the aver-
age duration of the walks of each user when he or she is
at his workplace (i.e. the maximum component). The
longer the user moves in a place, the more he or she will
tend to ‘‘explore’’ this place. Comparing these values to
our index, we found a correlation coefficient of 0.76,
which also confirms, to a certain extent, the validity of
this index.

Activities. Finally, separate from the graph theory princi-
ples, we compute two indexes for each mobility activity:
physical activity and in-vehicle activity. These scores
simply reflect the proportion of time the user was per-
forming a physical activity or was in a vehicle. They are
simply computed by dividing the count of each activity
over the total count of all activities. The accuracy is
high and was verified using the activity diaries provided
by the users and the timestamped data. Indeed, the
veracity of the Android activity recognition API has
been largely verified by the literature and supported by
previous studies.7

Use-case

Figure 10 shows four examples of profiles in the form
of a radar chart (or Kiviat diagram, as described in
Chang et al.18) based on data collected on four partici-
pants having different characteristics in our dataset.
The minimum and maximum axes for each characteris-
tic are determined according to our dataset.

Participants P1 (yellow), P11 (blue), and P12 (green)
drive a car and live in cities which are far from their
work, while participant P7 (red) lives near to his work-
place and gets around by bike and by public transport,
as reflected by his high urban index (i.e. a large number
of Wi-Fi APs scanned when moving).

Figure 10. Mobility profile of P1 (yellow), P7 (red), P11 (blue),
and P12 (green).
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Moving slowly (bus and on foot) allows more APs to
be scanned, in comparison with other means of trans-
port, which creates the greatest number of connected
components, as reflected in the visited locations.

As introduced in section ‘‘Environmental sensors,’’
participant P12 has a sporty profile, as reflected by his
high physical activity score. Conversely, participant P1
does not move much when at his workplace, as reflected
by his relatively low spatial exploration index. Note,
however, that the spatial exploration index tends to be
close for each participant as they share the same place
during most of the day on which they participated in
the data collection.

Finally, Note that participant P1 is an intermediate
case, having results situated in the middle of our experi-
ments. Participant P11 travels more than other partici-
pants, as reflected by his vehicular activity score.

Development and evaluation of a mobility
assistant

Under the hood: building an android application

Our Mobility Assistant consists of a two-tier client and
server application implemented on Android and based
on the architecture proposed in Faye et al.17

Specifically, the system architecture includes the follow-
ing: (1) a client-side data recording and processing
component and (2) a backend server onto which we
offload heavy-duty graph metric computations. The cli-
ent application records user activity and anonymized
Wi-Fi traces to generate a user’s activity profile and
intermediate mobility data. Next, the client transfers
this data to the remote server through a secure connec-
tion. The server then computes and extracts the

mobility metrics and sends the result back to the client
to be displayed on the user interface. Three main tabs
are displayed in the application, namely, Activity,
Mobility, and Survey Tabs as described below.

Activity. This part of the application makes use of smart-
phone sensors and the Android Activity Recognition
API to detect physical (walking, running, and on foot),
vehicular (in vehicle or on Bicycle), and still (inactive or
immobile) activities of the user. These metrics are dis-
played in a radar chart as shown in Figure 11(a) and
serve as input to the mobility feature extraction algo-
rithm. This tab also displays in real time a pedometer
reading the number of steps the user has walked since
the device was last turned on. Users can also view his-
torical data on step counts and walked distance for the
previous 7 days. The range seek bar beneath the radar
chart gives the user the flexibility to navigate through
his historical activity data.

Mobility profile. This tab, as depicted in Figure 11(b),
shows user’s mobility indexes represented in the form
of a radar chart. By default, after every 24 h, the client
application requests the computation of the mobility
metrics by uploading anonymized user activity and Wi-
Fi traces to the server.

Contextual survey. In order to label the dataset, we con-
ducted a contextual survey so as to collect real-world
mobility information of users, including when, where,
and how they move. The survey results are presented in
vertical bar charts as depicted in Figure 11(c). By
default, the application will prompt the user from time
to time, by means of notifications, to complete a survey

Figure 11. MAMBA mobility assistant: (a) activity tab, (b) mobility profile tab, (c) contextual survey tab, and (d) MAMBA open trip
planner.
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questionnaire regarding his or her mobility activities.
Users can change this configuration in the settings tab.
However, to avoid overwhelming the user with notifi-
cations, a notification is only sent once as long as the
user’s activity remains unchanged.

Finally, as described below, the mobility assistant
also has a section dedicated to a trip planning applica-
tion based on the open-source software
OpenTripPlanner (OTP; http://www.opentripplanner.-
org/).

Use-case: multimodal trip planning

One of the key objectives of this application is to use
the obtained results as input to a context-aware multi-
modal trip planning software. This software is currently
being developed as part of a national funded project,
MAMBA. In particular, our trip planner is built on top
of OTP.

OTP is an open-source multimodal trip planner. It
bases itself on OSM and General Transit Feed
Specification (GTFS) data to build a graph of transit
networks. OSM provides the streets’ data, whereas the
GTFS supplies the location of transit stops and the
timings of the vehicles that visit those stops. OTP cre-
ates travel time contour visualizations by computing
the shortest path between a source and a destination
under a given set of constraints.

Ideally, when planning a trip with OTP, the user
provides the source and destination addresses to the
application which in turn displays the available trips’
information to the user. The MAMBA mobility profi-
ler, thanks to our mobility profiling algorithm, seeks to
anticipate this scenario by automatically considering
the user preferences (e.g. mode of transportation and
type of roads to consider) and give him or her real-time
transportation advice. For example, based on the user’s
activity, mobility behavior, and other external data
sources, the application can notify him or her about
when to leave home for work or for a meeting. The
application could also inform the user about his or her
estimated time of arrival, advises him or her not take
his or her personal car to work but rather to take a
public transport due to unavailability of parking space,
perhaps because of an event at/near his workplace. A
screenshot of the trip planner is shown in Figure 11(d).

In order to evaluate our application, a first data col-
lection campaign has been performed. Further results
and discussions, which are out of the context of this
article, will be given in a future publication.

Additional metrics: the case of Bluetooth

Bluetooth has been used in the past by others19–21 for
characterizing different human behaviors to identify
among other things the mobility and environment of

users. In addition to the findings presented in this arti-
cle, we discuss below the potential of combining the use
of Bluetooth to our system.

Bluetooth’s application-centric nature, compared to
Wi-Fi’s network-centric nature, has the potential to
further improve a sensing system by profiling not only
the user’s surroundings by also detecting activities and
social interactions.

Using Bluetooth traces would allow to characterize
different information about the environment.
Moreover, it is clear how the potential of this technol-
ogy, when used to its fullest, can further improve our
profiling methodology.

By analyzing Bluetooth’s discovery characteristics,
we can add more information to our network traces. By
observing manufacturer- and class-specific data within
discovery packets, we can enhance our fingerprinting.
Analyzing such data will help us to identify and classify
nearby devices by observing their class type (e.g. smart-
watch, smartphone, car, or TV).

Furthermore, it is important to differentiate between
standard Bluetooth and Classic Bluetooth (BC or
Bluetooth Smart). The BC implementation, introduced
from the protocol specification 4.0, is not backwards
compatible with standard Bluetooth as it uses different
physical and link layers. This particular version has
gained its popularity due to its low energy requirements
and its very advantageous range (i.e. up to 100 m in its
current version 4.2).

In previous work, we tested the feasibility of classify-
ing a vehicular environment by contextualizing our sur-
rounding through Bluetooth discovery data.22 By
looking at the type of discovered devices while driving,
we observed how different device types are correlated
to specific road types (e.g. TVs will only be discovered
in urban areas). In a similar way by analyzing the
amount of devices discovered over time, we can deduce
a probable traffic situation (e.g. congested if many
vehicles are discovered in a specific context).

Knowledge about the environment and traffic condi-
tions could directly offer added value to improve our
mobility profiler. As an example, Bluetooth could help
complement Wi-Fi in our urban index (section ‘‘Urban
index’’). Furthermore, for Bluetooth-only discovered
devices, we could extend this concept to a different mobi-
lity index capable of identifying, based on name and type
of a device, the probability of it being either fixed (e.g.
TV, iBeacon) or mobile (e.g. car, smartphone).

Very recently (December 2016; https://www.blue-
tooth.com/news/pressreleases/2016/12/07/bluetooth-5-
now-available), the Bluetooth special interest group
finally launched the latest version of this technology.
Bluetooth 5 promises up to four times the range of version
4.2 and up to eight times the amount of data (https://
www.bluetooth.com/specifications/bluetooth-core-specifi
cation/bluetooth5). These figures, together with the
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promise of an even better coexistence with Wi-Fi, are
promising for whether this technology will be adopted
massively in the coming years. In our particular case, the
extended range could allow us to identify even further
devices and thus improving the overall accuracy of the
profiler.

In conclusion, Bluetooth in its current and future dif-
ferent forms and implementations can and should be used
for a multitude of human mobility-related applications.

Conclusion

In this article, we have explored different ways of study-
ing user mobility, proposing creative ways in which the
study can be achieved. We used an open-source plat-
form and an anonymous dataset collected over 13 par-
ticipants. In particular, we used network and activity
data acquired from smartphones and smartwatches. In
addition to study the interest of using physiological and
motion data, we show that the use of network data has
a good potential for describing and characterizing a
user’s mobility. In particular, combining graph theory,
activity data and Wi-Fi traces allow to characterize spe-
cific aspects of a user’s mobility behavior, such as his or
her physical activity and number of visited locations.
Using these findings has allowed us to propose a way
of describing user mobility by creating a profile in the
form of a radar graph. This profile offers a simple and
inexpensive way to analyze five characteristics showing
user preferences and mobility choices.

Even if the metrics presented in this article remain
very general, we really think that theories allowing the
representation and abstraction of large datasets, such
as graph theory, can bring a greater level of detail to
human mobility characteristics.

The work presented in this article is empirical, in the
sense that it details a set of ideas based on a multimodal
dataset and several scenarios. One future work, which
has already been carried out through a few publica-
tions,6,7 is to go deeper into each of the aspects men-
tioned in the article.

In future work, we intend to take advantage of these
conclusions, which provide clear inputs to support intel-
ligent mobility systems such as navigation services as
described in section ‘‘Development and evaluation of a
mobility assistant.’’ It is easy to imagine this kind of ser-
vice, taking into account different types of profiles (e.g.
automatic selection of mode of transportation, favorite
route, and places). While the profile generation method
suggested in this article remains an illustrative example
of the potential for sensor systems, we also plan to for-
mally validate the relationship between graph theory
and mobility patterns, in addition to introduce new
topologies and graph theory aspects, such as dynamic
graphs and time-dependent components.
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