
Synchronized Preprocessing of Sensor Data
1st Amal Tawakuli

Department of Computer Science
University of Luxembourg

amal.tawakuli@uni.lu

2nd Daniel Kaiser
Department of Computer Science

University of Luxembourg
daniel.kaiser@uni.lu

3rd Thomas Engel
Department of Computer Science

University of Luxembourg
thomas.engel@uni.lu

Abstract—Sensor data whether collected for machine learning,
deep learning or other applications must be preprocessed to
fit input requirements or improve performance and accuracy.
Data preparation is an expensive, resource consuming and
complex phase often performed centrally on raw data for a
specific application. The dataflow between the edge and the
cloud can be enhanced in terms of efficiency, reliability and
lineage by preprocessing the datasets closer to their data sources.
We propose a dedicated data preprocessing framework that
distributes preprocessing tasks between a cloud stage and two
edge stages to create a dataflow with progressively improving
quality. The framework handles heterogenous data and dynamic
preprocessing plans simultaneously targeting diverse applications
and use cases from different domains. Each stage autonomously
executes sensor specific preprocessing plans in parallel while
synchronizing the progressive execution and dynamic updates
of the preprocessing plans with the other stages. Our approach
minimizes the workload on central infrastructures and reduces
the resources used for transferring raw data from the edge. We
also demonstrate that preprocessing data can be sensor specific
rather than application specific and thus can be performed prior
to knowing a specific application.

Index Terms—Data Quality, Data Preprocessing, Sensor Data,
Edge Computing, Data Management

I. INTRODUCTION

Industries are increasingly relying on Internet of Things
(IoT) sensing devices for data-driven and intelligent solutions.
This wide spread adoption of sensors is coupled with an
exponential increase in the volume and variety of sensor data.
Transferring raw sensor data to a central infrastructure for stor-
age and processing consumes valuable resources (bandwidth,
storage, CPU time , etc.). Optimizing the consumption of these
resources will reduce costs and improve efficiency. Raw data
may be incompatible (in terms of size, format, etc.), biased
or may consist of outliers. One can identify from literature
a common understanding that data preprocessing is the set
of operations that transform raw data into quality input. It
includes operations such as feature extraction, normalization
and noise reduction [1]–[3]. Preprocessing data is necessary
to obtain quality input and ultimately quality output. Quality
data spans many characteristics including reliability, trace-
ability, compatibility and completeness [4], [5]. Data with
such characteristics contribute to the application’s performance
and prevent errors that could propagate the pipeline causing
negative impact and losses. From the technical perspective,

quality data contribute to better predictions and classifications
and faster convergence (more efficient learning). From the
business perspective, quality data result in more reliable deci-
sion making, achieve legal compliance and boost operation’s
efficiency [6]. In many scenarios addressing data preprocessing
as early as possible is more effective (e.g. keeping private
data at the source) and more efficient (e.g. less bandwidth
used when resizing images to fit the input requirements of a
convolutional neural network).

Data preprocessing is complex and typically tailored for
a specific problem. This is due to the heterogeneity of the
data, applications and the contexts [7], [8]. Data is often
preprocessed when applications are initiated, which increases
preprocessing costs and complexity due to the accumulation
of raw data. Batch preprocessing raw sensor data in a central
system may take up to 80% of available resources [1], [7].
Edge and fog computing paradigms are popular solutions
to the limitations and challenges of the centralized cloud
computing model in the context of IoT applications [9]–[11].
Our first hypothesis is that by dividing data preprocessing tasks
into stages executed by different entities at different locations
(cloud and edge), the challenges of maintaining quality data
can be incrementally addressed and conquered. Our second
hypothesis is that decoupling data preprocessing from appli-
cation (processing), not only accelerates data preprocessing but
also provides for needed versatility and extensibility to handle
new hardware deployments (new sensors) and new require-
ments (new preprocessing tasks). This means that improving
data quality can be generalized and performed as data are
generated. The third hypothesis is that by coordinating and
synchronizing the preprocessing tasks between the edge and
the cloud, it is possible to offer a resilient and dynamic solution
that addresses the characteristics of sensor data and IoT.

We propose a three stages framework that progressively im-
proves the quality of the data flowing from sensors (Stage 1),
through a central edge preprocessing system (Stage 2) to a
central cloud system (Stage 3) creating more structured, main-
tainable and sustainable dataflow and data lakes. The solution
is dedicated for data preprocessing and it is not specific to an
application or dataset. The preprocessing between the three
stages is synchronized from cloud to edge and coordinated
from edge to cloud. The framework can be used under three
scenarios. The first is when the best possible sequence of pre-
processing tasks has been identified after a thorough analysis
of a specific dataset for a specific application or problem. The978-1-7281-6251-5/20/$31.00 ©2020 IEEE

preprocessing plan is then deployed to our framework to be
executed between the different stages. The second scenario
involves deploying preprocessing tasks specific to a sensor,
data type, data semantic (e.g. car engine temperatures), context
or processing technology (e.g. deep learning) but without prior
data analysis or identification of an application or problem. For
example, by knowing that a sensor is measuring the engine
temperature of a passenger car, it is possible to apply quantile
clipping to remove outliers. Many sensors deployed at the edge
collect data for one or more applications identified before sen-
sor platform deployment. With our framework common pre-
processing tasks can be executed once and future applications
can benefit from better quality data retrieved from existing
sensors thus improving efficiency and reducing preprocessing
complexity. The third usage scenario is when the framework is
used as part of the problem and data analysis phase to aid data
scientists and engineers in testing the devised preprocessing
plans in a distributed environment. The contributions of this
paper are as follow:

1) Dynamic handling of heterogeneous data and versatile
types and numbers of sensors reinforced by the concur-
rent execution of diverse preprocessing plans.

2) Masterless yet coordinated execution of preprocessing
plans and synchronized yet efficient updates of the plans
between the cloud and two edge stages.

The above contributions are manifested in a dedicated
data preprocessing framework consisting of three stages that
progressively improve the quality of sensor data with new
communication and data management mechanisms. In addition
to the above contributions, we also present our evaluation of
a prototype to prove the feasibility of the hypotheses and
the effectiveness of the proposed solution. In this paper, we
particularly focus on the edge stages of the framework, which
are Stage 1 (Smart Sensors Units) and Stage 2 (Edge Engines)
and the dataflow from edge to cloud.

II. THE FRAMEWORK

A. Overview

Our framework consists of three stages; one central stage
and two stages at the edge. The first edge stage consists of
sensors emitting data and it is where sensor data are first
handled and preprocessed hence the similarity with the notion
of smart sensors. Existing commercial ”smart” sensors perform
predefined and fixed tasks. This is why we followed the foot-
steps of many researchers [8], [12]–[14] in developing our own
customized smart sensors using a more powerful single-board
computer, namely the Raspberry Pi that can be connected with
several different types of sensors. We call a Raspberry Pi
with connected sensors a Smart Sensor Unit (SSU). The edge
consists of multiple sensors as part of one or more SSU(s)
making up Stage 1 of the framework. The edge also consists
of Stage 2; a middle layer of one or more edge engines,
which are devices with greater computational capabilities and
storage capacities that can perform further preprocessing on
the data received from Stage 1. Data collected from the edge

are transferred from Stage 2 to a central or cloud system,
which we label as Stage 3. In our prototype, data collected
and preprocessed at SSUs are transferred via WiFi to Stage 2
and Stage 3, however other communication technologies can
be used depending on the hardware used. Figure 1 depicts an
overview of the framework deployed in an automotive setting.

Fig. 1: Framework Architecture.

Each sensor has a preprocessing plan associated to it. The
plans are shared and synchronized between all stages and
are distributed from Stage 3 down to Stage 1. Data emitted
from a connected sensor are preprocessed according to the
preprocessing plan associated to that sensor. The framework
separates between sensor’s preprocessing plans and the pre-
processing tasks’ logic. Each stage consists of pre-installed
preprocessing tasks that can be updated and synchronized
down the stages via software updates rather than constantly
deploying containers from a central entity thus removing
bottlenecks and reducing dependencies. A preprocessing plan
instructs each stage on which task to execute, in what order and
using which parameters and data inputs (data dependencies).
This decoupling facilitates the continuous change of sensors’
preprocessing plans to cope with the dynamic nature of data.
Our new mechanism to update and synchronize preprocessing
plans is efficient. Assuming the relevant tasks are already
installed at the edge stages, adding or updating a preprocessing
plan of a sensor requires the transmission of one message from
Stage 3 down to the edge stages. The framework dynamically

determines the sensor’s data type and invokes the relevant
functions for data handling and management. Details about the
preprocessing plans are discussed in section II-C. The Frame-
work’s two-ways communication mechanism is discussed in
section II-D. Details about each stage will be presented in
sections II-F, II-G, II-H.

B. Requirements and Objectives

The main requirement of the framework is to synchronize
and parallelize the execution of diverse preprocessing plans
between different stages to transfer quality sensor data to the
cloud. We also wanted to use portable edge components and
designed the framework to be agnostic to the infrastructure
(operating systems and hardware). All stages have certain
level of autonomy in the sense that a stage can continue
operating and executing the preprocessing plans without a
connection with or scheduling from an upper stage. In this
paper we focus on the synchronization of preprocessing tasks
from Stage 1 to Stage 2 and evaluate the impact of distributed
data preprocessing in achieving the following objectives:

1) Reduce resources (e.g. computational time, memory,
bandwidth) required to obtain quality data.

2) Handle heterogenous stream data and sensor data from
multiple sources concurrently.

3) Facilitate the deployment of preprocessing tasks as soon
as data are collected including prior to knowing specific
applications to extract information or value.

Achieving the aforementioned objectives will facilitate and
automate data preprocessing thus removing the ”data prepara-
tion” hurdle stopping many organizations from commissioning
AI projects and obtaining results faster. The objectives are also
in alignment with industry 4.0 principles namely ”interconnec-
tion” and ”decentralized decisions” [15].

C. Preprocessing Plans

The preprocessing plan is a compilation of preprocessing
tasks to be executed on data coming from a particular sensor.
The intra-stage representation of the preprocessing plan is a
Directed Acyclic Graph (DAG). The nodes represent the pre-
processing tasks and retain information about the data flowing
in and out. They also consist of lists of their predecessors and
successors. Nodes that do not depend on predecessors for input
are called roots while nodes that do not have successors are
identified as sinks. Edges between nodes represent data de-
pendencies between the preprocessing tasks. A preprocessing
plan is exchanged between the stages as an encoding specific
to our framework (inter-stage representation). The DAG of an
active device is constructed locally in each stage at system
initialization or prompted by an update using the received
inter-stage representation. This approach enables synchroniza-
tion between the stages while maintaining certain autonomy
within the edge stages. It also facilitates DAG updates and their
propagation down the stages as changing the preprocessing
plan of a sensor is a matter of sending a message with the
inter-stage representation of the modified preprocessing plan.
Changes may be as simple as updating task parameters or

as significant as having completely new preprocessing plans
with new tasks and execution sequences. The complexity of
the update does not affect the update mechanism; meaning any
change will require one message. Other than the message, the
edge stages do not further rely on the cloud to deploy and
execute the modified or new preprocessing plans. The only
exception to this is if any of the tasks within an updated or
new preprocessing plan is not installed or deployed at the edge.
We assume an identified pool of preprocessing tasks that are
deployed in each stage. As future work, new tasks may either
be deployed from Stage 3 to the edge stages as containerized
applications or directly installed at each edge entity.

DAG Generation A preprocessing plan is transferred from
the upper stages as a communication internal to the framework.
It is then used by the edge stages to construct the DAG
object and its member node objects with properties and
functionalities specific to our framework. For such reasons,
we designed our own simple and compact text format of
the inter-stage representation of the preprocessing plans. The
format was specifically designed for the representation of DAG
objects consisting of nodes that represent preprocessing tasks
and their parameters. In the format, nodes are represented with
a unique identifier. Each parent node is associated with its
child nodes separated with semicolons. This structure defines
the data dependencies between tasks. Only forward (parent to
child) relationships need to be represented in the text format.
The different relationships are separated with colons. Task
parameters for each node are placed between brackets and
are separated with commas. The first parameter of each task
is mandatory and represents the stage where it should be
executed (task allocation). The following is the template:

t1(p11); ...; tn(pn1, pn2) : ... : tn(); ...; tm(pm1, ..., pmi).

Where m is the number of nodes, tm represents the last
task and pm1 represents the first parameter of task tm. For
demonstration purposes the template includes a task with one
parameter, a task with two parameters and one with multiple
parameters in that order, however, the sequence and location
of tasks does not affect the number of parameters; this is
merely dependent on the functionality. Nodes repeated in the
encoding do not need to have their parameters restated making
the structure more compact. Figure 2 shows an example of a
DAG representation of a preprocessing plan with the following
inter-stage representation:

A1(1);B(1, 105.7);C(1) : B;A2(1, 0, 100) : C;A2.

Fig. 2: Intra-stage representation

Given the inter-stage representation of a preprocessing plan,
each stage generates the DAG (intra-stage representation). The
DAG deserialization function recognizes nodes that have been
already added to the DAG object, and only constructs one
instance of a node. The function only extracts parameters of
newly created nodes and thus triggers dictionary updates of
task parameters once per node. The function also automatically
determines backward relationships (child to parent) and adds
them to the relevant nodes.

DAG Execution Order There are dependencies between
most preprocessing tasks and thus they must be executed
sequentially. For example, standardization precedes principle
component analysis (PCA) and PCA precedes features re-
duction. This makes our three stages architecture well suited
for data preprocessing. Stage 2 and Stage 3 can also execute
preprocessing tasks in parallel given there are no dependencies
between them. Edge stages produce one output for each input
received from the previous stage or a data source. This design
choice avoids amplifying the volume of data transmitted
between the stages which would defeat one of our main
objectives. To control the volume of the transmitted data and
ensure operations’ integrity and completeness, the following
rules are applied for the execution of the shared DAG:

1) Stage 1 must execute all the root nodes as they expect
the raw data as input or otherwise none of the tasks are
executed in Stage 1 (if the latter case applies then rule
1 applies to Stage 2). Exception to this rule if only one
of the stage outputs is a vector or matrix and the rest of
the outputs are scalar values.

2) A single collider node (inverted fork) and its prede-
cessors as far as the last single collider node must be
executed at the same stage (applicable on edge stages).

3) A node can be executed if all of its parent nodes have
completed execution and produced output.

4) At an edge stage, the execution of nodes would result
in one stage output to be transferred over the network.

These rules in addition to ongoing work would help us fur-
ther extend the framework to partially automate the allocation
of the preprocessing tasks to the different stages, which is an
advantage over existing solutions.

D. 2-way Communication

The data flows within the framework in two directions; each
direction serves a purpose as explained in the following:

Top-Down Dataflow Messages sent from Stage 3 down to
Stage 1 are for the purpose of propagating updates across the
framework’s stages; mainly for preprocessing plan and task
parameter updates. The messages consist of the identification
of one or more sensors and the inter-stage representation of
their preprocessing plans. All stages receive the same copy of
the preprocessing plan for each sensor. The messages are either
updates of existing preprocessing plans or initialization of
new sensors. Initialization messages standardize sensor details
across the stages as they invoke local stage dictionary updates.
These dictionaries hold information about connected sensors
including their identification, data type, data semantic and

preprocessing plan. Due to the minimalist text representation
of the preprocessing plan, top-down messages are compact
even when they contain updates for multiple sensors. The
lower stages do not require further control messages to per-
form their operations and preprocess sensor data and thus top-
down dataflow is more efficient and less likely to suffer from
bottlenecks or disruption from upper stage failure.

Bottom-Up Dataflow Data sent from Stage 1 up to Stage 3
are sensor data that have been completely or partially pre-
processed. It is also possible for the data to arrive at Stage 3
without preprocessing due to intended configuration or a fault.
Such case has an impact on efficiency and performance but
not on system integrity as the preprocessing plans can be
completely executed at Stage 3. A synchronized execution of
shared preprocessing plans makes the framework fault tolerant
and resilient as upper stages can pick-up where the previous
stage has stopped. If a lower stage fails to execute the tasks
designated to it, then the next stage executes these tasks in
addition to its own task allocation. This mechanism is enabled
by the bottom-up messages, which consist of information
about the DAG status and the execution progress including
the stage at which each task was executed and when they
were executed. The messages also consist of the sensor data,
labels (if applicable), the time the messages were created,
the sensor and SSU identifications. The metadata ensures
data provenance and lineage. A message consists of one or
more windows of data generated by one sensor. The data is
encapsulated with their metadata using the following format:

sensorID, ssuID, engineID, time, label,DAGStatus, {data}.

The following is the DAG status format:

n1 : sn : t1;n2 : sn : t2; ...;nn : sn : tn.

Where ni represents a task in the preprocessing plan, sn is
the stage number at which the task was executed and ti is
the timestamp when the task ni execution was completed.
All sensor data are encoded before being incorporated to the
messages. At the destination, the data are decoded back to their
original type or format during task execution. The edge stages
can be configured so that the data are accumulated in a buffer
(batched) until a certain threshold is reached before being sent
off to the upper stage or otherwise tuples are sent off once their
preprocessing has been completed (streamed). The size of the
message can be changed per sensor. Our prototype sends fixed
sized messages containing encoded image data and smaller
variable sized messages containing encoded numerical data
from one SSU. Some preprocessing tasks may not result in
the reduction of data volume, which means that our framework
increases the message’s payload with the added metadata. In
this case, performance enhancement is observed during data
processing and model training with added insights and data
lineage. This direction of the dataflow has more traffic and
requires more bandwidth per message. Stage 3 may receive
multiple messages from multiple edge engines and Stage 2
may receive multiple streams of data from multiple SSUs.
Listener threads are created at Stage 2 and Stage 3 to handle
multiple messages concurrently and cope with the larger traffic
volume. Details are discussed in sections II-G, II-H.

Inter-stage Network Setup All stages can act as client and
server. For bottom-up dataflow the respective lower stage acts

as client. The roles are reversed for the top-down dataflow.
TCP is used to transmit messages between stages as we require
reliable data streams. While our current prototype uses fixed
IP addresses, our framework is designed for configurationless
service discovery. We plan to use DNS Service Discovery
over Multicast DNS (DNS-SD/mDNS) [16], [17]. It provides
our framework with the necessary flexibility also in terms of
network configuration. Since we focus on supporting mobile
setups, it is important to take privacy aspects of configuration-
less service discovery into consideration [18], [19].

E. The Data

The framework handles structured data (dates, numbers,
etc.) and unstructured data (images, audio, etc.). In addition
to the possibility of collecting spatial data, the framework
includes temporal and data source information with the col-
lected sensor data. This integral part of the framework allows
for the deployment of spatio-temporal correlation and filtering
as part of a preprocessing plan and facilitates data lineage.
Semantic and contextual information about the sensed data
facilitate the identification of sensor specific preprocessing and
the automation of data normalization and cleaning techniques
prior to identifying any applications to extract value. Data
collected from sensors undergo several phases at each stage in-
cluding windowing to slice unbounded data into finite chunks.
Stage 1 and Stage 2 create fixed-sized tuple-based windows,
which are collected in messages to be transferred to an upper
stage. In our prototype, the receiving stage extracts window(s)
from a message and preprocesses window content directly
without further windowing or partitioning. This makes our
windowing approach unique as it occurs at the sending end
rather than at the receiving end. It is also possible to configure
the framework to perform temporal windowing at the receiving
stage should it be required in future projects. The window
size, which is the maximum volume of data a window can
contain is based on data volume in bytes. The window size
(threshold) can be modified to have one tuple per window
for stream execution or several tuples for batch execution.
Each sensor can have its own window and message sizes
and the framework can concurrently preprocess different sized
windows from different data sources.

In some cases, access to raw data may be needed due to
ineffective or erroneous outcomes of the preprocessing tasks
applied. There is an inverse correlation between maintaining
resources and keeping raw data. The problem domain and
data owner’s objectives and goals determine whether priority
is given to data value or resource value. Our project addresses
the challenge of optimally maintaining limited resources con-
sumed by raw data during their storage, transmission and
preprocessing. Particularly when raw data eventually ends up
being reduced, transformed or cleaned before being used as
input. Having said that, there are few techniques integrated into
the framework to achieve a better balance between keeping the
raw data and reducing resources. One technique is preserving
raw data during the execution of the preprocessing plan to
enable rollbacks. The SSU can also be configured to store

raw data temporarily and for a certain duration. It is also an
option to send the raw data to edge engines via a local network.
Edge engines can then store the raw data locally or send
batches of raw data to an external storage system via a separate
communication channel. With this option both preprocessed
and raw data are transmitted via the network, however, the
burden of storing and preprocessing data on the central system
is still reduced. Lastly, because all stages share the same copy
of the preprocessing plan including task parameters, it is also
possible for some preprocessing tasks to be reverted and thus
obtain the data prior to their execution.

F. Stage 1

The framework exploits the notion of smart sensors to
perform frontline preprocessing as data are collected. Stage 1
may consist of one or many sensors connected to SSUs. Each
sensor has a preprocessing plan associated to it and predefined
information stored in the SSU. Sensor information include
sensor identification, device type, data type, data unit, data
semantic and GPIO pins, which are all initialized as part of
defining new sensors. Adding a new sensor requires physically
connecting the sensor to an SSU and updating the relevant
dictionaries with the aforementioned information. The new
sensor can be associated with its preprocessing plan via an
update sent from Stage 3. The preprocessing plans of sensors
can also be dynamically and seamlessly updated whenever
required. The SSU logic does not require code modifications to
recognize the new sensor or handle its data. An SSU listens for
data from each sensor and execute the relevant preprocessing
plans on new data concurrently. We used Raspberry Pi 4
Model B with 4GB LPDDR4 RAM and 256 GB memory to
create a prototype SSU. We implemented Stage 1 using C++
programming language and used WiringPi GPIO access library
and OpenCV framework to handle image data. The software
architecture of Stage 1 consists of three main components as
illustrated in figures 1 and 3.

Fig. 3: Stage1 Software Architecture

The listener: The listener component creates a thread
for each sensor to concurrently listen for their data. The
listener continuously listens for input from sensors without
interruption or blocking. Any collected data is tagged with
a timestamp. This preprocessing task is one of few tasks
the system performs that is not part of a DAG. In other
words, it is mandatory and applied to all data. The listener
adds collected data to the window. Once the window’s size
reaches exactly or nearly (if data volume varies) the threshold,
the current window is shipped to the executer component

while the listener continues listening for data and fills the
next windows. For our prototype, windows’ sizes vary and
depend on the sensors and their data types, for example the
maximum window size for numerical data is 128 bytes while
it is hundreds of kilobytes for image data. The system can be
configured to modify the window size for each sensor.

The Executer: A full window is shipped to the executer
for the data to be preprocessed based on the device’s specific
preprocessing plan. One of the advantages of the framework’s
design is that the DAG of each sensor is only constructed once
at initialization or after an update. This means that the data
are preprocessed directly without the delays of constructing the
DAG each time a window is shipped. Another design choice
that was made to promptly preprocess real-time data streams
is the creation of a separate thread for the execution of the
preprocessing plan. The execution thread runs concurrently
with and independently from the sensor’s listener thread. The
execution thread, however, terminates when the executions of
all the preprocessing tasks allocated for Stage 1 are complete.
The execution of preprocessing tasks on the current window
occurs in a sequential order using depth-first traversal of the
DAG. Assuming for illustrative purposes that the complete
preprocessing plan of a sensor is to be executed at Stage 1, the
sequential execution of the DAG starts with finding the root
nodes and executing one root node at a time and propagating
down its child nodes. Child nodes are executed recursively
until the last sink node is reached and executed. A child node
is only executed when all the data from its parent nodes are
received, otherwise execution moves to the next child node or
an upper node. This is important to ensure the credibility of the
outcome and completeness of the execution. At the same time,
it guarantees correct and smooth coordination between the
stages. If the preprocessing plan is partly executing at Stage 1
then Stage 2 will continue executing the preprocessing plan
without having execution gaps in the DAG and by receiving
valid and complete data for the next task(s). During execution,
each node is updated with its execution progress and success,
which is information useful for the coordination between the
different stages.

The Transporter: The result of Stage 1 execution is passed
to the transporter, which is the component responsible for
the preparation and transfer of messages containing Stage 1
output to Stage 2 for further preprocessing or data relay. The
transporter receives an output window and based on its size
and data type determines whether to send it directly to Stage 2
or add it to a buffer of accumulated ready to send data. Once
the buffer reaches the threshold, the transporter prepares the
message. The message includes one or more output window
and the metadata as described in section II-D. The transporter
creates a TCP socket to connect with Stage 2 and attempts to
send the message. If the connection or transmission fails, the
transporter stores the message for later attempts.

G. Stage 2

Stage 2 adds another preprocessing layer at the edge. An
Edge Engine is designed to handle multiple data streams

from multiple SSUs. Stage 2 may consists of one or more
edge engine(s). The data received at Stage 2 may be batches
or streams of raw or preprocessed data from Stage 1. The
execution of the preprocessing plan at Stage 2 depends on two
factors; the first is the allocation of tasks extracted from the
preprocessing plan and the second is the progress status of
the DAG received within messages from Stage 1. The engine
either continues the execution of the preprocessing plan based
on the original task allocation or starts with the tasks allocated
to Stage 1 but were not executed due to an error. Most of the
components of Stage 2 are written in C++. OpenCV library is
used to handle image data and POSIX socket is used for the
communications with Stage 1 and Stage 3. Stage 2 can run in
any hardware with memory capacity, computation capability
and connectivity sufficient for users’ projects. This may be a
RaspberryPi, Tablet, Laptop or an industry-grade compact PC.
For our prototype, a key consideration, in addition to sufficient
computation power, large storage capacity and wireless con-
nectivity, was mobility as we plan to deploy the prototype in an
automotive setup. Based on these requirements we chose to use
a tablet with 6GB RAM and 1TB memory. The starting point
of an edge engine involves creating listener threads that receive
messages of varying sizes from Stage 1. In our prototype, the
number of threads is equal to the number of sensors connected
to the framework’s SSUs. A thread, however is not dedicated
to a sensor but rather to the SSU. This means multiple threads
may be handling data generated by one sensor while having
at least one thread listening to data from each SSU. Figure 1
includes an illustration of Stage 2 architecture.

The Connector: At each thread a connector establishes
a connection with an SSU. The connector component also
establishes a connection with Stage 3 to send sensor data and
receive updates of the preprocessing plans.

The Parser: The connector ships messages to the parser
component, which decodes the messages and extracts the
window(s). A message consists of data from one sensor
encapsulated in one or more window(s). The parser ships the
extracted window(s) to the executer to execute the sensor’s
preprocessing plan on them.

The Executer: At the executer, a thread switches from
listener mode to execution mode. Stage 2 creates concurrent
execution flows for data received from different sensors within
a single SSU. This level of concurrency allows for simultane-
ous execution and progression of independent preprocessing
plans preventing unnecessary queueing and delays. The exe-
cution mechanism implemented in Stage 2 differs from Stage 1
in that the DAG is not executed sequentially. Nodes that are
independent from each other and have received all their input
data are executed concurrently via separate threads. Assuming
for illustrative reasons that the preprocessing plan is executed
completely at Stage 2, the executer starts with the root nodes
by creating execution threads for each root and executing their
preprocessing tasks. The outputs of the root nodes are added to
their child nodes. Child nodes are executed concurrently when
all the data from their predecessors are received. The nodes
of the DAG are recursively executed under the later condition

until the last sink node is executed. The thread then switches
back to listener mode. This switching mechanism does not stop
the process of receiving data even from the current sensor as
other active threads dedicated for the current and other SSUs
can be in listening mode and receiving data. The number of
threads created can be increased or decreased according to
the application and activity of sensors. Data preprocessed at
Stage 2 are sent to Stage 3 or stored locally for later transfers.

H. Stage 3

Relative to the framework’s edge stages, sensor data re-
ceived at Stage 3 are no longer characterized as real-time,
however, compared with existing stream processing frame-
works (e.g. Apache Flink) data arriving at this stage would
still be within the range of real-time. Stage 3 executes the
remaining preprocessing tasks on arriving data. It acts as a
middle layer between our framework and existing big data
tools for storage, processing or analytics. Data can either
be processed directly after Stage 3 preprocessing or stored
for batch processing using tools selected by the user. We
currently use MATLAB (R2019b) to perform batch processing
experiments and evaluate the impact of using our framework
on performance, resource consumption, model training and
prediction accuracy. Our experiments included using machine
learning (e.g. Multi-class Support Vector Machine) and deep
learning (e.g. GoogLeNet) models on raw and preprocessed
data received from the framework. Details about some of the
experiments are discussed in section III.

One of the main functions of Stage 3 is to allow users
to control the preprocessing applied to the data emitted by
each sensor remotely. For example, changing the per channel
means to normalize production images can be done by sending
to Stage 2 the inter-stage representation of the preprocessing
plan consisting of the new mean values as parameters of the
normalization task. The updated parameters will be relayed
from Stage 2 to Stage 1 where the sensors reside. Changes to
the preprocessing plan may be more drastic such as adding
completely new preprocessing tasks to be executed on data
generated from a particular sensor. Such changes may be
the result of identifying new applications and opportunities
to extract value from the data. Stage 3 also sends synchro-
nization messages to the lower stages when new sensors and
SSUs are added. These messages ensure dictionaries at all
stages consist of uniform and up-to-date information about
sensors and SSUs. We plan to integrate a partially automatic
recommendation mechanism of stages at which tasks within a
preprocessing plan can be optimally executed. The conditions
discussed in sections II-C will be used as the basis of the
automatic recommendation mechanism. Currently, the task
allocations are manually included in the inter-stage messages.

III. EXPERIMENTAL RESULTS

We tested the framework with different data types including
numerical data and images. For the image data use case we
assumed an identified application, which flower image classi-
fication. We simulated image capturing at the SSU (Stage 1).

We used the Flower dataset from the university of Oxford and
extracted 12 categories. Each category consists of 75 training
images and 5 test images. The dataset included images of
varying dimensions. We standardized the size of all images to
260*260*3 for two reasons, to control the maximum size of
messages transmitted between the stages and to provide more
accurate bandwidth calculations. Image data are classified at
Stage 3 (MATLAB) using the convolutional neural network
(CNN) AlexNet [20]. Transfer learning technique is used on
a pre-trained AlexNet by replacing the last three layers (Fully
Connected Layer, Softmax Layer and Classification Layer)
to adapt the network to our classification application and its
categories. The data layer of AlexNet takes images with 277
by 277 by 3 dimensions. Thus, image resizing is a mandatory
preprocessing task on data with different dimensions to fit the
input requirements. The authors of AlexNet also normalized
the input data by zero-centering the pixels of each image
[20]. We implemented the preprocessing tasks image resize
and pixel zero-centering normalization and deployed them at
Stage 1 and Stage 2. The image resize task takes the new
dimensions as parameters while the normalization task takes
the channel means as parameters. The per-channel means were
calculated from the training dataset and used on all the datasets
(training, testing and validation). The first experiment we
performed was to evaluate the impact of sending preprocessed
images on resource consumption and efficiency. The image
dataset was first sent from Stage 1 to Stage 2 without prepro-
cessing. The same dataset was then preprocessed at Stage 1 and
transmitted to Stage 2. Both image-resize and zero-centering
tasks were executed at Stage 1. Reducing the size of images
has an obvious impact on transfer time and bandwidth usage,
which is visualized in diagrams 4. Another benefit of the two
preprocessing tasks applied is that all information has been
maintained, meaning none of the images have been deleted
and the original pixel values can be restored at the upper stages
since all stages share the same per-channel mean values.

Fig. 4: Data Transfer Duration per 100 Images

The second set of experiments was designed to evaluate
the impact of distributing the workload to the edge that would
otherwise be solely executed at a central system. We measured

the execution time of the preprocessing tasks image-resize
and zero-centering on different volumes of training datasets.
We started with a 20MB volume dataset and squared the
volumes up to 640MB using the same flower dataset. Figure
5 shows the average execution duration for each volume.
The preprocessing time of data larger than 160MB is no
longer proportional to the data volume and that there is a
significant increase in the duration of execution. This means
that distributed preprocessing would have a greater impact on
overall training time as the size of the data increases. The
results reflect the time required to perform relatively simple
preprocessing tasks. We plan to investigate the impact of
distributing more complex preprocessing tasks to the edge.
In our image classification experiments, we worked with
relatively small datasets (24.7 MB training dataset and 1.7 MB
test dataset), however, the results remain promising and a good
indication of preprocessing datasets in giga bytes volume.

Fig. 5: Preprocessing (resizing & centering) Time of Different Volumes

The average execution time of resizing 900 images is
approximately 25% less in Stage 2 than in Stage 1 and the
average execution time of normalziation is approximately 33%
less. This is expected as the SSUs have lower computational
capabilities than the upper stages, however, utilizing the
computation power of many edge devices not only reduce
bandwidth usage but also reduce workload on central systems.
We also measured the prediction time difference between
raw data, which are preprocessed in MATLAB, and ready to
predict data that were preprocessed at Stage 1. The prediction
duration of data preprocessed at the edge saw an average
reduction of 56.5% compared to raw data. The results also
show more consistent prediction times for images preprocessed
at the edge. The prediction durations of test data preprocessed
at Stage 1 and Stage 3 are illustrated in figure 6. The figure
reflects the results of tests repeated 14 times on each dataset.

For our numerical data use case we assumed an appli-
cation has not yet been identified. We connected a DHT22
Temperature and Humidity sensor to the same SSU used to
simulate the image capturing use case. The framework handled
data generated from both data sources and executed the
relevant preprocessing plans concurrently on data windows.
Two preprocessing tasks were applied on the data collected

Fig. 6: Impact of Edge Preprocessing on Prediction Time

from the DHT22 sensor. The first is rounding the readings
to a specified decimal place(s) and the second is scaling the
readings using min-max normalization technique to keep both
types of readings (temperature and humidity) on a similar
scale. We placed the SSU in a vehicle and collected tempera-
ture and humidity data inside the vehicle. Both preprocessing
tasks were executed on the data as they were collected in
Stage 1. The raw and preprocessed data were sent to Stage 3
for analysis. In this use case per message volume reduction is
not impactful especially since the preprocessing tasks do not
result in significant reduction compared to the added meta-
data. The edge preprocessing, however, removed unnecessary
data volumes and replaced it with metadata about data lineage.
MATLAB function was used to fit linear regression models
using the raw data and the preprocessed data. Performing anal-
ysis of variance (ANOVA) for each model exhibit a smaller
mean squared error (MSE) for preprocessed data model than
for the raw data model.

IV. RELATED WORK

The majority of existing data preprocessing solutions are
central or cloud-based libraries and tools. MATLAB provides
an extensive list of preprocessing functions under different
toolboxes depending on the data type and application [21].
Python machine learning library scikit-learn includes a prepro-
cessing package that provides several preprocessing functions
to perform standardization, normalization, encoding categor-
ical features and imputation of missing values [22]. Cloud
DataPrep is a cloud service that imports raw data and provides
users with visual tools to explore, clean and prepare data
providing estimations and recommendations of the next pre-
processing tasks. The tool also automatically detects schemas
and data anomalies [23]. Google Data Validation system is
a cloud tool deployed in Google Tensorflow ecosystem that
automatically generates data schemas to validate batches of
data, detect anomalies and minimizes feedback loop [24].
Bosch IoT Analytics provides in cloud preprocessing of data
collected from IoT devices. Preprocessing services include
anomaly detection, normalization and data aggregation [25].

Authors in [26] proposed an Apache Flink library for prepro-
cessing streaming data. The library includes six preprocess-
ing algorithms implemented for Apache Flink. Some of the
selected algorithms are for feature selection such as the Fast
Correlation-Based Filter (FCBF) and Online Feature Selection
(OFS). The other selected algorithms are for data discretization
such as Incremental Discretization Algorithm (IDA) and Local
Online Fusion Discretizer (LOFD) [26]. Featuretools is a
central python framework that automates feature engineering.
”It excels at transforming temporal and relational datasets into
feature matrices for machine learning” [27]

Recently, solutions have been proposed to move data pre-
processing and processing to the edge. Microsoft Azure IoT
edge is a fully managed service built on Azure IoT Hub
that deploys containerized applications to edge devices. Users
must then define workload descriptions which are files that
lists the containers to be deployed to a particular edge device
type. Once online, edge devices communicate with Azure
IoT Hub to obtain workload descriptions from which the
edge devices download Docker containers from the cloud.
Any update to the preprocessing plan requires the deployment
of the containerized services even if they were previously
deployed. Health status messages of edge devices are also
communicated to the cloud for monitoring [28]. Amazon offers
AWS IoT Greengrass which extends AWS to edge devices
to utilize AWS Lambda functions or Docker containers. The
solution is not a dedicated preprocessing framework and does
not coordinate data preparation between the cloud and the
edge. It is up to the user to configure the edge from the cloud to
deploy application-specific preprocessing tasks to be executed
by one device or a cluster of edge devices. The execution of the
preprocessing tasks, however, is independent within a device
and not collective and coordinated between devices within a
cluster [29]. Dell also offers an Edge Gateway for IoT which
enables customers to preprocess and exploit data at the edge
[30]. The edge solutions offered by Microsoft, Amazon and
Dell assume applications and their optimal preprocessing tasks
are identified. It is also not clear whether partial deployment
of the preprocessing plans is supported and how users can
identify whether the data received in the cloud are prepro-
cessed or not. Users also need to either have an account at
their cloud infrastructure or use vendor specific software and
hardware. Big Automotive Data (BAuD) [31] is a framework
for automotive telematics and data analytics, which consist of
an in-vehicle telematics components connected with a cloud-
based analytics framework. In addition to transmitting data
generated in the vehicle to the cloud, the telematics component
can perform preprocessing and analytics on the collected data.
BAuD is a two-way-communication system where measure-
ment tasks (for data capturing and preprocessing) are sent
from the cloud to the telematics system for execution and
at the same time data captured in the vehicles are streamed
or sent as batches to the cloud. Authors of [8] proposed
a three-tier framework for Big Data preprocessing in smart
cities applications. The framework consists of a command
center that is connected to one or more cluster(s) of edge

agents. Each cluster has a cluster head which is an agent with
greater computation power and storage capacity. The cluster
head relays requests from the command center to the edge
entities and transfers data from agents to the command center.
They adopted the MapReduce programming model and Bulk
Synchronous Parallel (BSP) model for the execution of the
preprocessing tasks at the edge and cloud. MapReduce and
BSP are not optimal options, performance wise, when it comes
to stream processing. Authors of [32] proposed a framework
that preforms edge preprocessing on sound data to filter
features that compromise privacy. By transforming emotion
feature and preserving features related to speech content at
the edge, only non-sensitive features can be transferred to the
cloud for speech analysis. The framework can be extended to
distribute other data preprocessing tasks but it is restricted to
signal data. Distributing Machine Learning and Deep Learning
to the edge or fog, which involves preprocessing, is also an
active research field [10], [33]–[35].

From our literature review, we observe a lack of clear
and strong synchronization between the cloud and the edge
particularly in terms of collective and coordinated execution of
the preprocessing tasks. There is also an imbalance of prepro-
cessing tasks distribution, in other words, preprocessing tasks
are either completely performed in the cloud or completely
imported to the edge. The later scenario deems any failure of
executing preprocessing tasks at an edge component impactful
particularly with a lack of a dynamic mitigation mechanism, as
the central components assume data is ready for consumption.
Solutions that distribute preprocessing tasks at the edge are
designed for manual configuration and updates and require
users to have prior knowledge of the application. It is often that
use cases and applications are identified after data collection,
which render many of the solutions with such assumption
ineffective and data will continue to be collected as raw. We
also noticed that edge components have limited autonomy and
depend on a central entity to repeatedly retrieve tasks for
execution. Additionally, continuous communication is required
between edge components and the cloud for monitoring pur-
poses. Our framework addresses these limitations and, to the
best of our knowledge, it is the first to provide a dedicated,
synchronized and coordinated data preprocessing that can
be both application specific and agnostic. The framework
facilitates our research in generalizing applicable preprocess-
ing operations and progressively improving the quality of
the dataflow with prior preprocessing tasks determining the
parameters or techniques of the next preprocessing tasks.

V. CONCLUSION AND FUTURE WORK

Many opportunities to capitalize data are hindered by an
expensive and complex data preprocessing phase. The majority
of data collected from the edge are moved and stored as
raw data. With the growing number of applications for IoT
devices, addressing the challenge of preprocessing sensor data
efficiently and effectively is becoming more vital. In this paper,
we introduced a dedicated data preprocessing framework with
three stages that synchronize and coordinate the execution

of sensor specific preprocessing plans. We demonstrated the
feasibility of concurrently executing different preprocessing
plans close to the data sources. Our new approach facilitates
the updating of preprocessing tasks to cope with the dynamic
nature of data. Our first prototype achieved promising results
in reducing resources required to preprocess data and reduce
the time to obtain information and value. The preprocessed
data produced by the framework can be easily traced and
extracted from storage and data lakes based on data source,
data provenance or temporal criteria.

We plan to deploy and test more complex preprocessing
plans at the edge including feature extraction and missing
data analysis. We intend to extend the diversity of the data
collected to include audio signals and video streams directly
from connected cameras and microphones. We are also looking
to address data privacy and fairness and deploy preprocessing
tasks that eliminate data biases and protect personal data at
the edge. The framework will particularly excel in applications
where mobility and diversity of data are main requirements.
We plan to experiment and evaluate the use of the framework
within an automotive application as a next step. We also plan
to evaluate our framework against related tools to assess the
validity of our framework and contributions with regards to
efficiency, performance and data quality.

REFERENCES

[1] Y. Huang, M. Milani, and F. Chiang, “PACAS: Privacy-aware, data
cleaning-as-a-service,” in 2018 IEEE International Conference on Big
Data (Big Data). IEEE, dec 2018.

[2] C. Li, “Preprocessing methods and pipelines of data mining: An
overview.”

[3] S. Ruan, R. Li, J. Bao, T. He, and Y. Zheng, “CloudTP: A cloud-
based flexible trajectory preprocessing framework,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, apr
2018.

[4] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
01 2012.

[5] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino,
“Methodologies for data quality assessment and improvement,”
ACM Computing Surveys, vol. 41, no. 3, Jul. 2009. [Online]. Available:
https://doi.org/10.1145/1541880.1541883

[6] H. Moreno. (2017) The importance of data
quality - good, bad or ugly. [Online].
Available: https://www.forbes.com/sites/forbesinsights/2017/06/05/the-
importance-of-data-quality-good-bad-or-ugly/#3fe7d65010c4

[7] S. Krishnan, M. J. Franklin, K. Goldberg, J. Wang, and E. Wu,
“Activeclean: An interactive data cleaning framework for modern
machine learning,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 21172120. [Online].
Available: https://doi.org/10.1145/2882903.2899409

[8] B. Mohebali, A. Tahmassebi, A. H. Gandomi, and A. Meyer-Bse, “A
big data inspired preprocessing scheme for bandwidth use optimization
in smart cities applications using raspberry pi,” in Big Data: Learning,
Analytics, and Applications, F. Ahmad, Ed. SPIE, may 2019.

[9] S. A. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan, “The
emerging landscape of edge computing,” GetMobile: Mobile Computing
and Communications, vol. 23, no. 4, pp. 11–20, may 2020.

[10] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, jan 2018.

[11] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey.”

[12] R. Aloufi, H. Haddadi, and D. Boyle, “Privacy preserving speech
analysis using emotion filtering at the edge,” in Proceedings of the 17th
Conference on Embedded Networked Sensor Systems. ACM, nov 2019.

[13] Q. Luo and M. Xie, “Temperature and humidity detection system of
communication system based on raspberry pi,” in 2018 International
Conference on Intelligent Transportation, Big Data & Smart City
(ICITBS). IEEE, jan 2018.

[14] D. A. Winkler and A. E. Cerpa, “WISDOM,” in Proceedings of the 17th
Conference on Embedded Networked Sensor Systems. ACM, nov 2019.

[15] X. Zheng, M. Wang, and J. Ordieres-Meré, “Comparison of data
preprocessing approaches for applying deep learning to human activity
recognition in the context of industry 4.0,” Sensors, vol. 18, no. 7, p.
2146, jul 2018.

[16] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,”
RFC 6763, Feb. 2013. [Online]. Available: https://rfc-
editor.org/rfc/rfc6763.txt

[17] ——, “Multicast DNS,” RFC 6762, Feb. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc6762.txt

[18] D. Kaiser and M. Waldvogel, “Adding privacy to multicast DNS service
discovery,” in 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE, sep
2014. [Online]. Available: https://doi.org/10.1109%2Ftrustcom.2014.107

[19] ——, “Efficient privacy preserving multicast DNS service discovery,”
in 2014 IEEE Intl Conf on High Performance Computing and
Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC,CSS,ICESS). IEEE, aug 2014. [Online]. Available:
https://doi.org/10.1109%2Fhpcc.2014.141

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, may 2017.

[21] MathWorks. Preprocessing data. [Online]. Available:
https://nl.mathworks.com/help/matlab/preprocessing-data.html

[22] scikit learn. Preprocessing data. [Online]. Available: https://scikit-
learn.org/stable/modules/preprocessing.html

[23] Google and Trifacta. Cloud dataprep by trifacta. [Online]. Available:
https://cloud.google.com/dataprep

[24] E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data
validation for machine learning,” in Proceedings of the 2nd Conference
on Machine Learning and Systems, 2019.

[25] Bosch. What is bosch iot analytics anomaly detection? [Online].
Available: https://developer.bosch-iot-suite.com/service/analytics/

[26] A. Alcalde-Barros, D. Garcı́a-Gil, S. Garcı́a, and F. Herrera, “DPASF:
a flink library for streaming data preprocessing,” Big Data Analytics,
vol. 4, no. 1, jun 2019.

[27] Featuretools. What is featuretools? [Online]. Available:
https://docs.featuretools.com/en/stable/

[28] Microsoft, Azure IoT Edge documentation. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/opbuildpdf/iot-
edge/toc.pdf?branch=live

[29] Amazon. Aws iot greengrass documentation. [Online]. Available:
https://docs.aws.amazon.com/greengrass/latest/developerguide/stream-
manager.html

[30] Dell. Dell edge gateways for iot. [Online].
Available: https://www.dell.com/en-us/work/shop/gateways-embedded-
computing/sf/edge-gateway

[31] M. Johanson, S. Belenki, J. Jalminger, M. Fant, and M. Gjertz, “Big
automotive data: Leveraging large volumes of data for knowledge-driven
product development,” in 2014 IEEE International Conference on Big
Data (Big Data). IEEE, oct 2014.

[32] R. Aloufi, H. Haddadi, and D. Boyle, “Emotionless: Privacy-preserving
speech analysis for voice assistants.”

[33] S. A. Miraftabzadeh, P. Rad, K.-K. R. Choo, and M. Jamshidi, “A
privacy-aware architecture at the edge for autonomous real-time identity
reidentification in crowds,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2936–2946, aug 2018.

[34] J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, “Embedded
deep learning for vehicular edge computing,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, oct 2018.

[35] I. Kholod, M. Efimova, A. Rukavitsyn, and S. Andrey, “Time series
distributed analysis in IoT with ETL and data mining technologies,” in
Lecture Notes in Computer Science. Springer International Publishing,
2017, pp. 97–108.

